OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19480–19492

Scattering error corrections for in situ absorption and attenuation measurements

David McKee, Jacek Piskozub, and Ian Brown  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19480-19492 (2008)
http://dx.doi.org/10.1364/OE.16.019480


View Full Text Article

Enhanced HTML    Acrobat PDF (455 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monte Carlo simulations are used to establish a weighting function that describes the collection of angular scattering for the WETLabs AC-9 reflecting tube absorption meter. The equivalent weighting function for the AC-9 attenuation sensor is found to be well approximated by a binary step function with photons scattered between zero and the collection half-width angle contributing to the scattering error and photons scattered at larger angles making zero contribution. A new scattering error correction procedure is developed that accounts for scattering collection artifacts in both absorption and attenuation measurements. The new correction method does not assume zero absorption in the near infrared (NIR), does not assume a wavelength independent scattering phase function, but does require simultaneous measurements of spectrally matched particulate backscattering. The new method is based on an iterative approach that assumes that the scattering phase function can be adequately modeled from estimates of particulate backscattering ratio and Fournier-Forand phase functions. It is applied to sets of in situ data representative of clear ocean water, moderately turbid coastal water and highly turbid coastal water. Initial results suggest significantly higher levels of attenuation and absorption than those obtained using previously published scattering error correction procedures. Scattering signals from each correction procedure have similar magnitudes but significant differences in spectral distribution are observed.

© 2008 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.4458) Atmospheric and oceanic optics : Oceanic scattering
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 5, 2008
Revised Manuscript: October 29, 2008
Manuscript Accepted: November 5, 2008
Published: November 10, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
David McKee, Jacek Piskozub, and Ian Brown, "Scattering error corrections for in situ absorption and attenuation measurements," Opt. Express 16, 19480-19492 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, San Diego, Calif., 1994).
  2. M. Fujii, E. Boss, and F. Chai, "The value of adding optics to ecosystem models: a case study," Biogeosciences 4, 817-835 (2007). http://www.biogeosciences.net/4/817/2007/bg-4-817-2007.pdf [CrossRef]
  3. S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-15-2705 [CrossRef] [PubMed]
  4. C. D. Mobley, L. K. Sundman, C. O. Davis, J. H. Bowles, T. V. Downes, R. A. Leathers, M. J. Montes, W. P. Bissett, D. D. R. Kohler, R. P. Reid, E. M. Louchard, and A. Gleason, "Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables," Appl. Opt. 44, 3576-3592 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-17-3576 [CrossRef] [PubMed]
  5. D. Stramski and J. Piskozub, "Estimation of Scattering Error in Spectrophotometric Measurements of Light Absorption by Aquatic Particles from Three-Dimensional Radiative Transfer Simulations," Appl. Opt. 42, 3634-3646 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ao-42-18-3634 [CrossRef] [PubMed]
  6. J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, "Influence of Forward and Multiple Light Scatter on the Measurement of Beam Attenuation in Highly Scattering Marine Environments," Appl. Opt. 43, 4723-4731 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=ao-43-24-4723 [CrossRef] [PubMed]
  7. D. Stramski, "Artifacts in measuring absorption spectra of phytoplankton collected on a filter," Limnol. Oceanogr. 35, 1804-1809 (1990). http://aslo.org/lo/toc/vol_35/issue_8/1804.pdf [CrossRef]
  8. C.S. Roesler, "Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique," Limnol. Oceanogr. 43, 1649-1660 (1998). http://www.aslo.org/lo/toc/vol_43/issue_7/1649.pdf [CrossRef]
  9. J. T. O. Kirk, "Monte Carlo modeling of the performance of a reflective tube absorption meter," Appl. Opt. 31, 6463-6468 (1992). http://www.opticsinfobase.org/abstract.cfm?URI=ao-31-30-6463 [CrossRef] [PubMed]
  10. J. H. M. Hakvoort and R. Wouts, "Monte Carlo modelling of the light field in reflective tube type absorption meter," Proc. SPIE 2258,529-538 (1994). [CrossRef]
  11. J. Piskozub, P.J. Flatau, and J.V.R. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmos. Oceanic Technol. 18, 438-445 (2001). [CrossRef]
  12. J. R. V. Zaneveld, J. C. Kitchen and C. M. Moore, "The scattering error correction of reflecting-tube absorption meters," Proc. SPIE 2258, 44-55 (1994). [CrossRef]
  13. D. McKee, A. Cunningham, and S. Craig, "Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom," Appl. Opt. 42, 4369-4374 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ao-42-21-4369 [CrossRef] [PubMed]
  14. D. McKee and A. Cunningham, "Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas," Appl. Opt. 44, 126-135 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-1-126 [PubMed]
  15. D. Doxaran, M. Babin, and E. Leymarie, "Near-infrared light scattering by particles in coastal waters," Opt. Express 15, 12834-12849 (2007). [CrossRef] [PubMed]
  16. P. J. Flatau, J. Piskozub, and J. R. Zaneveld, "Asymptotic light field in the presence of a bubble-layer," Opt. Express 5, 120-123 (1999). [CrossRef] [PubMed]
  17. Z. Otremba and J. Piskozub, "Modelling of the optical contrast of an oil film on a sea surface," Opt. Express 9, 411-416 (2001). [CrossRef] [PubMed]
  18. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, "Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range," Appl. Opt. 45, 5294-5309 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-21-5294 [CrossRef] [PubMed]
  19. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-33-8710 [CrossRef]
  20. R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981). http://www.opticsinfobase.org/abstract.cfm?URI=ao-20-2-177 [CrossRef] [PubMed]
  21. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase Function Effects on Oceanic Light Fields," Appl. Opt. 41, 1035-1050 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-6-1035 [CrossRef] [PubMed]
  22. J. L. Forand and G. R. Fournier, "Particle distributions and index of refraction estimation for Canadian waters," Proc. SPIE 3761, 34-44 (1999). [CrossRef]
  23. W. Freda and J. Piskozub, "Improved method of Fournier-Forand marine phase function parameterization," Opt. Express 15, 12763-12768 (2007). [CrossRef] [PubMed]
  24. M. Jonasz and G. Fournier, "Approximation of the size distribution of marine particles by a sum of lognormal functions," Limnol. Oceanogr. 41, 744-754 (1996). [CrossRef]
  25. D. Risović, "Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater," Appl. Opt. 41, 7092-7101 (2002). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-33-7092 [CrossRef] [PubMed]
  26. M. Chami, D. McKee, E. Leymarie, and G. Khomenko, "Influence of the angular shape of the volumescattering function and multiple scattering on remote sensing reflectance," Appl. Opt. 45, 9210-9220 (2006) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-36-9210 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited