OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19504–19511

Coherently controlling metamaterials

Sangeeta Chakrabarti, S. Anantha Ramakrishna, and Harshawardhan Wanare  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19504-19511 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two independent significant developments have challenged our understanding of light-matter interaction, one, involves the artificially structured materials known as metamaterials, and the other, relates to the coherent control of quantum systems via the quantum interference route. We theoretically demonstrate that one can engineer the electromagnetic response of composite metamaterials using coherent quantum interference effects. In particular, we predict that these composite materials can show a variety of effects ranging from dramatic reduction of losses to switchable ultraslow-to-superluminal pulse propagation. We propose parametric control of the metamaterials by active tuning of the capacitance of the structures, which is most efficiently engineered by embedding the metamaterial structures within a coherent atomic/molecular medium. This leads to dramatic frequency dependent features, such as significantly reduced dissipation accompanied by enhanced filling fraction. For a Split-ring resonator medium with magnetic properties, the associated splitting of the negative permeability band can be exploited for narrow band switching applications at near infrared frequencies involving just a single layer of such composite metamaterials.

© 2008 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 18, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: October 31, 2008
Published: November 10, 2008

Sangeeta Chakrabarti, S. Anantha Ramakrishna, and Harshawardhan Wanare, "Coherently controlling metamaterials," Opt. Express 16, 19504-19511 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449 - 521 (2005). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 - 4776 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 - 2084 (1999). [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000). [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 - 1782 (2006). [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 - 79 (2001). [CrossRef] [PubMed]
  7. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000). [CrossRef] [PubMed]
  8. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001). [CrossRef] [PubMed]
  9. F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008). [CrossRef] [PubMed]
  10. Q1. V. M. Shalaev, "Optical negative index metamaterials," Nature Photon. 1, 41- 48 (2007). [CrossRef]
  11. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36 - 42 (1997). [CrossRef]
  12. S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107 - 1110 (1990). [CrossRef] [PubMed]
  13. K. J. Boller, A. Imamoglu, and S. E. Harris,"Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 - 2596 (1991). [CrossRef] [PubMed]
  14. M. O. Scully and M. S. Zubairy, Quantum Optics Cambridge Univ. Press, Cambridge, U.K. (1997).
  15. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 - 598 (1999). [CrossRef]
  16. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain assisted superluminal light propagation," Nature 406, 277 - 279 (2000). [CrossRef] [PubMed]
  17. M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855 - 1858 (1991). [CrossRef] [PubMed]
  18. Q2. G. S. Agarwal and Harshawardhan Wanare, "Inhibition and enhancement of two photon absorption," Phys. Rev. Lett. 77, 1039 - 1042 (1996). [CrossRef] [PubMed]
  19. S. O’Brien and J. B. Pendry,"Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys.: Condens. Matter 14, 6383 - 6394 (2002). [CrossRef]
  20. N. G. Kalugin and Y. V. Rostovtsev, "Efficient generation of short terahertz pulses via stimulated Raman adiabatic passage," Opt. Lett. 31, 969 - 971 (2006). [CrossRef] [PubMed]
  21. J. B. Pendry and A. Mackinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett. 69, 2772 - 2775 (1992). [CrossRef] [PubMed]
  22. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals" Phys. Rev. B 6, 4370 - 4379 (1972). [CrossRef]
  23. W. Vassen, "Laser cooling and trapping of metastable helium: towards Bose-Einstein condensation," Comptes Rendus de l’Academie des Sciences Series IV - Physics 2, 613-618 (2001).
  24. F. S. Pavone, G. Bianchini, F. S. Cataliotti, T.W. H¨ansch, and M. Inguscio, "Birefringence in electromagnetically induced transparency," Opt. Lett. 22, 736 - 738 (1997). [CrossRef] [PubMed]
  25. Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited