OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19535–19540

Lasing from InGaP quantum dots in a spin-coated flexible microcavity

V. M. Menon, M. Luberto, N. V. Valappil, and S. Chatterjee  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19535-19540 (2008)
http://dx.doi.org/10.1364/OE.16.019535


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the realization of a mechanically flexible microcavity laser emitting at 657 nm using spin coating. These optically pumped vertical cavity surface emitting lasers use InGaP colloidal quantum dots as the active medium and alternating polymer layers of different refractive indices as the Bragg mirrors. Results of photoluminescence measurements indicating enhancement in spontaneous emission are presented. We also demonstrate the possibility of peeling the device off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. This new class of hybrid lasers combines advantages of organic and inorganic materials.

© 2008 Optical Society of America

OCIS Codes
(140.3948) Lasers and laser optics : Microcavity devices
(140.7270) Lasers and laser optics : Vertical emitting lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 15, 2008
Revised Manuscript: November 7, 2008
Manuscript Accepted: November 7, 2008
Published: November 11, 2008

Citation
V. M. Menon, M. Luberto, N. V. Valappil, and S. Chatterjee, "Lasing from InGaP quantum dots in a spin-coated flexible microcavity," Opt. Express 16, 19535-19540 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, "GaInAsP/InP surface emitting injection lasers," Jpn. J. Appl. Phys. 18, 2329-2330 (1979). [CrossRef]
  2. H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, "Color selective semiconductor nanocrystal laser," Appl. Phys. Lett. 80, 4614-4616 (2002). [CrossRef]
  3. P. Snee, Y. Chan, D. Nocera, and M. Bawendi, "Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite," Adv. Mater. 17, 1131-1136 (2005). [CrossRef]
  4. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express 14, 3273-3281 (2006). [CrossRef] [PubMed]
  5. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, "From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids," Appl. Phys. Lett. 81, 1303-1305 (2002). [CrossRef]
  6. V. C. Sundar, H.-J. Eisler, T. Deng, Y. Chan, E. L. Thomas, and M. G. Bawendi, "Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers," Adv. Mater. 16, 2137-2141 (2004). [CrossRef]
  7. Y. Chan, J. M. Caruge, P. T. Snee, and M. G. Bawendi, "Multiexcitonic two-state lasing in a CdSe nanocrystal laser," Appl. Phys. Lett. 85, 2460-2462 (2004). [CrossRef]
  8. C. Finlayson, D. Ginger, and N. Greenham, "Optical microcavities using highly luminescent films of semiconductor nanocrystals," Appl. Phys. Lett. 77, 2500-2502 (2000). [CrossRef]
  9. P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004) [CrossRef] [PubMed]
  10. C. Poitras, M. Lipson, H. Du, M. Hahn, and T. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003). [CrossRef]
  11. I. Fushman, D. Englund, and J. Vučković, "Coupling of PbS quantum dots to photonic crystal cavities at room temperature," Appl. Phys. Lett. 87, 241102 (2005). [CrossRef]
  12. J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006). [CrossRef] [PubMed]
  13. R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. Wong, "Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 µm at room temperature," Appl. Phys. Lett. 90, 111117 (2007). [CrossRef]
  14. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, "Enhanced spontaneous emission at 1.55 µm from colloidal PbSe quantum dots in a Si photonic crystal microcavity," Appl. Phys. Lett. 90, 171105 (2007). [CrossRef]
  15. M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. P-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal quantum dots in all-dielectric high-Q pillar microcavities," Nano. Lett. 7, 2897-2900 (2007). [CrossRef] [PubMed]
  16. L. Martidadonna, L. Carbone, M. De Giorgi, L. Manna, G. Gigli, R. Cingolani, and M. De Vittorio, "High Q factor colloidal nanocrystal based vertical microcavity by hot embossing," Appl. Phys. Lett. 88, 181108 (2006). [CrossRef]
  17. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Jounnopoulos, Y. Fink, and E. L. Thomas, "Polymer based photonic crystals," Adv. Mater. 13, 421-425 (2001). [CrossRef]
  18. M. Sandrok, M. Wiggins, J. S. Shirk, H. Tai, A. Ranade, E. Baer, and A. Hiltner, "A widely tunable refractive index in a nanolayered photonic material," Appl. Phys. Lett. 84, 3621-3623 (2004). [CrossRef]
  19. T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, "Fabrication of flexible distributed feedback laser using photoinduced surface relief grating on azo-polymer films as a template," Jpn. J. Appl. Phys. 41, L1386-L1388 (2002). [CrossRef]
  20. M. Kimura, K. Okahara, and T. Miyamoto, "Tunable multilayer-film distributed Bragg reflector filter," J. Appl. Phys. 50, 1222- 1225 (1979). [CrossRef]
  21. H. Sakata, H. Takeuchi, K. Natsume, and S. Suzuki, "Vertical-cavity organic lasers with distributed-feedback structures based on active Bragg reflectors," Opt. Express 14, 11681-11686 (2006). [CrossRef] [PubMed]
  22. R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, "Ultra-fast optical switches using 1D polymeric photonic crystals," Photon. Nanostruct. 3, 116-119 (2005). [CrossRef]
  23. N. V. Valappil, M. Luberto, V. M. Menon, I. Zeylikovich, T. K. Gayen, J. Franco, B. B. Das, and R. R. Alfano, "Solution processed microcavity structures with embedded quantum dots," Photon. Nanostruct. 5, 184-188 (2007). [CrossRef]
  24. T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89, 061123 (2006). [CrossRef]
  25. N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated polymer microcavities," Nature 382, 695-697 (1996). [CrossRef]
  26. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, "Polymer microdisk and microring lasers," Opt. Lett. 20, 2093-2095 (1995). [CrossRef] [PubMed]
  27. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999) [CrossRef]
  28. P. Andrew, G. A. Turnbull, I. D. W. Samuel, and W. L. Barnes, "Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser," Appl. Phys. Lett. 81, 954-956 (2002). [CrossRef]
  29. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, "Blue surface emitting distributed feedback polyfluorene lasers," Appl. Phys. Lett. 83, 2118-2120 (2003). [CrossRef]
  30. M. Reufer, S. Reichel, J. M. Lupton, J. Feldmann, U. Lemmer, D. Schneider, T. Benstem, T. Dobbertin, W. Kowalsky, A. Gombert, K. Forberich, V. Wittwer, and U. Scherf, "Low threshold distributed feedback lasers with metallic contacts," Appl. Phys. Lett. 84, 3262-3264 (2004). [CrossRef]
  31. R. Xia, G. Heliotis, P. N. Stavrinou, and D. D. C. Bradley, "Polyfluorene distributed feedback lasers operating in the green-yellow spectral region," Appl. Phys. Lett. 87, 031104 (2005). [CrossRef]
  32. L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Z-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 (2006). [CrossRef]
  33. S. Furumi, H. Fudouzi, H. Miyazaki, and Y. Sakka, "Flexible polymer colloidal -crystal lasers with a light-emitting planar defect," Adv. Mater. 19, 2067-2072 (2007). [CrossRef]
  34. J. Lawrence, Y. Ying, P. Jiang, and S. Foulger, "Dynamic tuning of organic lasers with colloidal crystals," Adv. Mater. 18, 300-303 (2006). [CrossRef]
  35. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000). [CrossRef]
  36. L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited