OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19550–19556

Enhancing resonant tunnelling of a wide beam through vertical slow-light photonic-crystal waveguides (SPCWs) with an assistant horizontal SPCW

Yi Jin and Sailing He  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19550-19556 (2008)
http://dx.doi.org/10.1364/OE.16.019550


View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Enhancement of resonant tunnelling of a wide beam through vertical subwavelength slow-light photonic-crystal waveguides (SPCWs) is considered. An assistant horizontal SPCW with a thin side wall, whose guided modes have small propagation constants, is used as an input coupler for the vertical SPCW, and the two SPCWs form a compact composite structure to enhance drastically the resonant tunnelling. An incident wide beam can excite strongly the guided modes of the horizontal SPCW, and then resonantly tunnels through the vertical SPCW efficiently. To further improve the resonant tunnelling of a wide beam, a periodic array of vertical SPCWs (with a horizontal SPCW as an input coupler) is also investigated. With this periodic structure, a wide beam can be transmitted nearly completely. When a wide beam tunnels through the vertical SPCWs efficiently, the excited fields inside the SPCWs are very strong.

© 2008 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.7370) Optical devices : Waveguides
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 8, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: November 8, 2008
Published: November 12, 2008

Citation
Yi Jin and Sailing He, "Enhancing resonant tunnelling of a wide beam through vertical slow-light photonic-crystal waveguides (SPCWs) with an assistant horizontal SPCW," Opt. Express 16, 19550-19556 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).
  2. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40, 2666-2670 (2007). [CrossRef]
  3. T. Baba, "Slow light in photonic crystals," Nature Photon. 2, 465-473 (2008). [CrossRef]
  4. D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004). [CrossRef]
  5. A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  6. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  7. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006). [CrossRef]
  8. R. S. Jacobsen,  et al., "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006). [CrossRef] [PubMed]
  9. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008). [CrossRef] [PubMed]
  10. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  11. Y. A. Vlasov and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50-52 (2006). [CrossRef] [PubMed]
  12. L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Tetu, and J. Fage-Pedersen, "Topology optimisation of slow light coupling to photonic crystal waveguides," Electron. Lett. 43, 923-924 (2007). [CrossRef]
  13. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, "Coupling into slow-mode photonic crystal waveguides," Opt. Lett. 32, 2638-2640 (2007). [CrossRef] [PubMed]
  14. P. Pottier, M. Gnan, and R. M. De La Rue, "Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers," Opt. Express 15, 6569-6575 (2007). [CrossRef] [PubMed]
  15. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  16. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  17. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  18. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited