OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19568–19578

Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging

Jun Qian, Xin Li, Ming Wei, Xiangwei Gao, Zhengping Xu, and Sailing He  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19568-19578 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4626 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Organically modified silica nanoparticles doped with Nile Red were synthesized and characterized. Silica encapsulation is relatively transparent for light and can protect hydrophobic Nile Red against denaturalization induced by the extreme bio-environment, making the entire nanoparticle hydrophilic and possess stable optical properties. The nanoparticles were conjugated with bio-molecules (such as apo-transferrin and folic acid), and our in vitro experiments revealed that these functionalized nanoparticles can serve as effective optical probes for specific targeting of cancer cells. As a preliminary study for future in vivo animal experiment, ORMOSIL nanoparticles were further co-conjugated with polyethyleneglycol (PEG) and apo-transferrin and the conjugates were also very good for in vitro targeting of HeLa cells. These bio-molecule functionalized ORMOSIL nanoparticles may serve as a robust tool for early diagnosis/therapy of cancer and other diseases.

© 2008 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(300.6170) Spectroscopy : Spectra
(160.4236) Materials : Nanomaterials

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 26, 2008
Revised Manuscript: November 9, 2008
Manuscript Accepted: November 10, 2008
Published: November 12, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Jun Qian, Xin Li, Ming Wei, Xiangwei Gao, Zhengping Xu, and Sailing He, "Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging," Opt. Express 16, 19568-19578 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. N. Prasad, Introduction to biophotonics, (Wiley-Interscience, New York 2003). [CrossRef]
  2. P. N. Prasad, Nanophotonics, (Wiley-Interscience, New York 2004). [CrossRef]
  3. I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005). [CrossRef] [PubMed]
  4. D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005). [CrossRef] [PubMed]
  5. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003). [CrossRef] [PubMed]
  6. S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007). [CrossRef] [PubMed]
  7. T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007). [CrossRef] [PubMed]
  8. S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007). [CrossRef]
  9. S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, "Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging," Adv. Mater. 19,3791-3795 (2007). [CrossRef]
  10. A. Burns, H. Ow, and U. Wiesner, "Fluorescent core-shell silica nanoparticles: towards "lab on a particle" architectures for nanobiotechnology," Chem. Soc. Rev. 35,1028-1042 (2006). [CrossRef] [PubMed]
  11. M. Shimada, N. Shoji, and A. Takahashi, "Enhanced efficacy of bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor," Anticancer Res. 15,109-116 (1995). [PubMed]
  12. X. Zhao, R. P. Bagwe and W. Tan, "Development of organic-dye-doped silica nanoparticles in a reverse microemulsion," Adv. Mater. 16,173-176 (2004). [CrossRef]
  13. M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000). [CrossRef]
  14. T. K. Jain, I. Roy, T. K. De, and A. N. Maitra, "Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier," J. Am. Chem. Soc. 120,11092-11095 (1998). [CrossRef]
  15. C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mater. 16,1673-1678 (2006). [CrossRef]
  16. J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007). [CrossRef] [PubMed]
  17. K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007). [CrossRef] [PubMed]
  18. H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007). [CrossRef]
  19. P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005). [CrossRef]
  20. W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006). [CrossRef]
  21. W. C. Chan, and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281,2016-2018 (1998). [CrossRef] [PubMed]
  22. Y. J. Lu and P. S. Low, "Folate-mediated delivery of macromolecular anticancer therapeutic agents," Adv. Drug Del. Rev. 54,675-693 (2002). [CrossRef]
  23. C. P. Leamon and P. S. Low, "Folate-mediated targeting: from diagnostics to drug and gene delivery," Drug Disc. Today. 6,44-51 (2001).
  24. Y. J. Lu, E. Sega, C. P. Leamon, and P. S. Low, "Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential," Adv. Drug Del. Rev. 56,1161-1176 (2004). [CrossRef]
  25. S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002). [CrossRef] [PubMed]
  26. X. Gao, Y, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechno. 22,969-976 (2004). [CrossRef]
  27. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004). [CrossRef]
  28. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, "Spectral extinction of colloidal gold and its biospecific conjugates," J. Colloid Interface Sci. 180,436-445 (1996). [CrossRef]
  29. B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, "Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra," Langmuir 24,8964-8970 (2008). [CrossRef] [PubMed]
  30. H. C. Van de Hulst, Light scattering by small particles, (Wiley-Interscience, New York 1957).
  31. G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415,767-770 (2002). [CrossRef] [PubMed]
  32. G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and P. K. Hopkins, "Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex," Opt. Lett. 31,359-361 (2006). [CrossRef] [PubMed]
  33. K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations," Angew. Chem. Int. Ed. 45,4562-4588 (2006). [CrossRef]
  34. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005). [CrossRef] [PubMed]
  35. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003). [CrossRef]
  36. X. Huang, I. H. El-Sayed, and M. A. El-sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128,2115-2120 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited