OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19667–19673

Energy efficient method for two-photon population transfer with near-resonant chirped pulses

Carles Serrat and Jens Biegert  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19667-19673 (2008)
http://dx.doi.org/10.1364/OE.16.019667


View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a method for complete population inversion in three level systems through π -pulse bichromatic two-photon coherent excitation and study the dependence on the chirp of the laser pulses. We observe that the population inversion does not monotonously decrease with increasing the time-bandwidth product, and that the excitation depends on the sign of the chirp of the individual pulses. Our results evidence a strategy for coherent population transfer which is energetically superior to adiabatic methods and opens the door for real-world applications, since it alleviates the need for challenging generation of transform-limited pulses at arbitrary wavelengths.

© 2008 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(280.3640) Remote sensing and sensors : Lidar
(320.1590) Ultrafast optics : Chirping

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: September 17, 2008
Revised Manuscript: October 30, 2008
Manuscript Accepted: November 1, 2008
Published: November 13, 2008

Citation
Carles Serrat and Jens Biegert, "Energy efficient method for two-photon population transfer with near-resonant chirped pulses," Opt. Express 16, 19667-19673 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19667


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Rice and M. Zhao, Optimal Control of Molecular Dynamics (Wiley Inter-Science, New York, 2000).
  2. M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley Inter-Science, Hoboken, New Jersey, 2003).
  3. J. L. Herek, "Coherent control of photochemical and photobiological processes," J. Photochem. Photobiol. A 180, 225 (2006). [CrossRef]
  4. A. Monmayrant, B. Chatel, and B. Girard, "Real time quantum state holography using coherent transients," Opt. Commun. 264, 256-263 (2006). [CrossRef]
  5. J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, "Generation of narrowband inversion with broadband laser pulses," Phys. Rev. Lett. 68, 2000-2003 (1992). [CrossRef] [PubMed]
  6. G. P. Djotyan, J. S. Bakos, G. Demeter, P. N. Ignácz, M. Á. Kedves, Zs. Sörlei, J. Szigeti, and Z. L. Tóth, "Coherent population transfer in Rb atoms by frequency-chirped laser pulses," Phys. Rev. A 68, 053409 (2003). [CrossRef]
  7. D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature (London) 396, 239-242 (1998). [CrossRef]
  8. D. Meshulach and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A 60, 1287-1292 (1999). [CrossRef]
  9. N. Dudovich, B. Dayan, S. M. Gallagher Faeder, and Y. Silberberg, "Transform-Limited Pulses are not Optimal for Resonant Multiphoton Transitions," Phys. Rev. Lett. 86, 47-50 (2001). [CrossRef] [PubMed]
  10. E. Mirowski, H. U. Stauffer, J. B. Ballard, B. Zhang, C. L. Hetherington, and S. R. Leone, "Effect of nonresonant frequencies on the enhancement of quantum beat amplitudes in rovibrational states of Li2: The role of state spacing," J. Chem. Phys. 117, 11228 (2002). [CrossRef]
  11. A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, "Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences," Phys. Rev. A 70, 063407 (2004). [CrossRef]
  12. V. V. Lozovoy and M. Dantus, "Systematic Control of Nonlinear Optical Processes using Optimally Shaped Femtosecond Pulses," ChemPhysChem 6, 1970-2000 (2005). [CrossRef] [PubMed]
  13. J. Hauer, T. Backup, and M. Motzkus, "Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry," J. Chem. Phys. 125, 061101 (2006). [CrossRef]
  14. P. Panek and A. Becker, "Dark pulses for resonant two-photon transitions," Phys. Rev. A 74, 023408 (2006). [CrossRef]
  15. F. T. Hioe and K. Bergmann, "Adiabatic population transfer in a three-level system driven by delayed laser pulses," Phys. Rev. A 40, 6741-6744 (1989). [CrossRef] [PubMed]
  16. S. Schiemann, A. Kuhn, S. Steuerwald, and K. Bergmann, "Efficient coherent population transfer in NO molecules using pulsed lasers," Phys. Rev. Lett. 71, 3637-3640 (1993). [CrossRef] [PubMed]
  17. K. Bergmann, H. Theuer, and B. W. Shore, "Coherent population transfer among quantum states of atoms and molecules," Rev. Mod. Phys. 70, 1003-1025 (1998). [CrossRef]
  18. P. Král, I. Thanopulos, and M. Shapiro, "Colloquium: Coherently controlled adiabatic passage," Rev. Mod. Phys. 79, 53 (2007). [CrossRef]
  19. J.-C. Diels, "Efficient selective optical excitation for isotope separation, using short laser pulse," Phys. Rev. A 13, 1520-1527 (1976). [CrossRef]
  20. J.-C. Diels and S. Besnainou, "Multiphoton coherent excitation of molecules," J. Chem. Phys. 85, 6347 (1986). [CrossRef]
  21. J. Biegert, J.-C. Diels, and P. W. Milonni, "Bichromatic two-photon coherent excitation of sodium to provide a dualwavelength guidestar," Opt. Lett. 25, 683-685 (2000). [CrossRef]
  22. J. Biegert, Polychromatic Multiphoton Coherent Excitation of Sodium (Der Andere Verlag, Osnabrück, 2001).
  23. J. Biegert and J.-C. Diels, "Feasibility study to create a polychromatic guidestar in atomic sodium," Phys. Rev. A 67, 043403 (2003). [CrossRef]
  24. S. Mukamel, Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
  25. W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, "Coherent Control for Spectroscopy and Manipulation of Biological Dynamics," ChemPhysChem 6, 850-857 (2005). [CrossRef] [PubMed]
  26. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
  27. R. G. Brewer and E. L. Hahn, "Coherent two-photon processes: Transient and steady-state cases," Phys. Rev. A 11, 1641-1649 (1975). [CrossRef]
  28. M. SargentIII and P. Horwitz, "Three-level Rabi flopping," Phys. Rev. A 13, 1962-1964 (1976). [CrossRef]
  29. B. W. Shore and J. Ackerhalt, "Dynamics of multilevel laser excitation: Three-level atoms," Phys. Rev. A 15, 1640-1647 (1977). [CrossRef]
  30. C. E. Carroll and F. T. Hioe, "Driven three-state model and its analytic solutions," J. Math. Phys. 29, 487 (1988). [CrossRef]
  31. S. Chelkowski and A. D. Bandrauk, "Coherent propagation of intense ultrashort laser pulses in a molecular multilevel medium," J. Chem. Phys. 89, 3618 (1988). [CrossRef]
  32. A. S. Choe, Y. Rhee, J. Lee, P. S. Han, S. K. Borisov, M. A. Kuzmina, and V. A. Mishin, "Effective excitation method of a three-level medium in a selective photoionization," Phys. Rev. A 52, 382-386 (1995). [CrossRef] [PubMed]
  33. A. F. Linskens, I. Holleman, N. Dam, and J. Reuss, "Two-photon Rabi oscillations," Phys. Rev. A 54, 4854-4862 (1996). [CrossRef] [PubMed]
  34. J. B. Kim, J. Lee, A. S. Choe, and Y. Rhee, "Geometrical representation of coherent-excitation methods using delayed and detuned lasers," Phys. Rev. A 55, 3819-3825 (1997). [CrossRef]
  35. L. Allen and J. H. Eberly, Optical resonance and two-level atoms, (Dover Publications, New York 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited