OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19674–19685

Long-range surface polaritons in ultra-thin films of silicon

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19674-19685 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (372 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental and theoretical study of the optical excitation of long-range surface polaritons supported by thin layers of amorphous silicon (a-Si). The large imaginary part of the dielectric constant of a-Si at visible and ultraviolet (UV) frequencies allows the excitation of surface polariton modes similar to long-range surface plasmon polaritons on metals. Propagation of these modes along considerable distances is possible because the electric field is largely excluded from the absorbing thin film. We show that by decreasing the thickness of the Si layer these excitations can be extended up to UV frequencies, opening the possibility to surface polariton UV optics compatible with standard Si technology.

© 2008 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.0310) Optics at surfaces : Thin films
(240.5420) Optics at surfaces : Polaritons

ToC Category:
Optics at Surfaces

Original Manuscript: September 24, 2008
Revised Manuscript: October 30, 2008
Manuscript Accepted: November 5, 2008
Published: November 13, 2008

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, "Long-range surface polaritons in ultra-thin films of silicon," Opt. Express 16, 19674-19685 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ruppin and R. Englman, "Optical phonons of small crystals," Rep. Prog. Phys. 33, 149-196 (1970). [CrossRef]
  2. D. L. Mills and E. Burstein, "Polaritons: the electromagnetic modes of media," Rep. Prog. Phys. 37, 817-926 (1973). [CrossRef]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005). [CrossRef]
  4. W. L. Barnes, A. Dereax, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  5. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001). [CrossRef]
  6. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  8. B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006). [CrossRef]
  9. A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007). [CrossRef]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008). [CrossRef]
  11. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  12. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  13. J. C. Quail, J. G. Rako, and H. J. Simon,"Long-range surface-plasmon modes in silver and aluminum films," Opt. Lett. 8, 377-379 (1983). [CrossRef] [PubMed]
  14. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  15. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000). [CrossRef]
  16. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003). [CrossRef]
  17. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range Coupled Surface Exciton Polaritons," Phys. Rev. Lett. 64, 559-562 (1990). [CrossRef] [PubMed]
  18. F. Yang, G. W. Bradberry, and J. R. Sambles, "Experimental observation of surface excitation-polaritons on vanadium using infrared radiation," J. Mod. Phys. 37, 1545-1553 (1990).
  19. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991). [CrossRef]
  20. E. L. Wood, J. R. Sambles, F. A. Pudonin, and V. Yakovlev, "Degenerate long range surface modes, supported on thin nickel films," Opt. Commun. 132, 212-216 (1996). [CrossRef]
  21. M. Takabayashi, M. Haraguchi, and M. Fukui, "Propagation length of guided waves in lossy Si film sandwiched by identical dielectrics," J. Opt. Soc. Am. B 12, 2406-2411 (1995). [CrossRef]
  22. T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998). [CrossRef]
  23. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  24. M. Sarrazin and J.-P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003). [CrossRef]
  25. F. Miyamaru, M. Tanaka, and M. Hangyo, "Resonant electromagnetic wave transmission through strontium titanate hole arrays with complex surface waves," Phys. Rev. B 74, 115117 (2006). [CrossRef]
  26. E. Popov, S. Enoch, and M. Neviere, "Plasmon surface waves and complex-type surface waves: comparative analysis of single interfaces, lamellar gratings, and two-dimensional hole arrays," Appl. Opt. 46, 154-160 (2005). [CrossRef]
  27. M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008). [CrossRef]
  28. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  29. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  30. D. W. Lynch and W. R. Hunter, Handbook of optical costants of solids, E. D. Palik, ed., (Academic Press, New York, 1985).
  31. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006). [CrossRef] [PubMed]
  32. R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007). [CrossRef] [PubMed]
  33. J. Dostalek, A. Kasry, and W. Knoll, "Long range surface plasmons for observation of biomolecular binding events at metallic surfaces," Plasmonics 2, 97-106 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited