OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19712–19723

Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth

Utkarsh Sharma, Ernest W. Chang, and Seok H. Yun  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19712-19723 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiple scattering in a sample presents a significant limitation to achieve meaningful structural information at deeper penetration depths in optical coherence tomography (OCT). Previous studies suggest that the spectral region around 1.7 µm may exhibit reduced scattering coefficients in biological tissues compared to the widely used wavelengths around 1.3 µm. To investigate this long-wavelength region, we developed a wavelength-swept laser at 1.7 µm wavelength and conducted OCT or optical frequency domain imaging (OFDI) for the first time in this spectral range. The constructed laser is capable of providing a wide tuning range from 1.59 to 1.75 µm over 160 nm. When the laser was operated with a reduced tuning range over 95 nm at a repetition rate of 10.9 kHz and an average output power of 12.3 mW, the OFDI imaging system exhibited a sensitivity of about 100 dB and axial and lateral resolution of 24 µm and 14 µm, respectively. We imaged several phantom and biological samples using 1.3 µm and 1.7 µm OFDI systems and found that the depth-dependent signal decay rate is substantially lower at 1.7 µm wavelength in most, if not all samples. Our results suggest that this imaging window may offer an advantage over shorter wavelengths by increasing the penetration depths as well as enhancing image contrast at deeper penetration depths where otherwise multiple scattered photons dominate over ballistic photons.

© 2008 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(140.3600) Lasers and laser optics : Lasers, tunable
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Imaging Systems

Original Manuscript: August 8, 2008
Revised Manuscript: October 10, 2008
Manuscript Accepted: October 16, 2008
Published: November 13, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Utkarsh Sharma, Ernest W. Chang, and Seok H. Yun, "Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth," Opt. Express 16, 19712-19723 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  2. J. M. Schmitt, A. Knuttle, M. J. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994). [CrossRef] [PubMed]
  3. L. Thrane, H. T. Yura, and P. E. Anderson, "Analysis of optical coherence tomography systems based on extended Huygens-Fresnel principle," J. Opt. Soc. Am. A 17, 484-494 (2000). [CrossRef]
  4. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, "Multiple scattering in optical coherence microscopy," Appl. Opt. 34, 5699-5707 (1995). [CrossRef] [PubMed]
  5. Y. T. Pan, R. Birngruber, and R. Engelhardt, "Contrast limits of coherence-gated imaging in scattering media," Appl. Opt. 36, 2979-2983 (1997). [CrossRef] [PubMed]
  6. R. K. Wang, "Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues," Phys. Med. Biol. 47, 2281-2299 (2002). [CrossRef] [PubMed]
  7. J. M. Schmitt and A. Knuttle, "Model of optical coherence tomography of heterogenous tissue," J. Opt. Soc. Am. A 14, 1231-1242 (1997). [CrossRef]
  8. S. G. Adie, T. R. Hillman, and D. D. Sampson, "Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors," Opt. Express 15, 18033-18049 (2007). [CrossRef] [PubMed]
  9. G. Yao and L. V. Wang, "Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media," Phys. Med. Biol. 44, 2307-2320 (1999). [CrossRef] [PubMed]
  10. L. Thrane, M. B. Frosz, T. M. Jorgensen, A. Tycho, H. T. Yura, and P. E. Anderson, "Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures," Opt. Lett. 29, 1641-1643 (2004). [CrossRef] [PubMed]
  11. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, "Light propagation in tissues with controlled optical properties," J. Biomed. Opt.  2, 401-4171997. [CrossRef]
  12. R. K. Wang and X. Xu, "Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents," J. Opt. Soc. Am. B 18, 948-9532001. [CrossRef]
  13. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy," Circulation 93, 1206-1213 (1996). [PubMed]
  14. Y. Pan and D. L. Farkas, "Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions," J. Biomed. Opt. 3, 446-455 (1998). [CrossRef]
  15. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). [CrossRef] [PubMed]
  16. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006). [CrossRef] [PubMed]
  17. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources," J. Biomed. Opt. 3, 76-79 (1998). [CrossRef]
  18. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 μm," Opt. Lett. 29, 2846-2848 (2004). [CrossRef]
  19. T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001). [CrossRef] [PubMed]
  20. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm," Opt. Spectrosc. 99, 836-842 (2005). [CrossRef]
  21. G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm to 200 µm wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  22. L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65 - 2.5 μm spectral range," Appl. Opt. 32, 3531-3540 (1993). [CrossRef] [PubMed]
  23. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003). [CrossRef] [PubMed]
  24. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftima, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  25. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006). [CrossRef] [PubMed]
  26. J. M. Schmitt, A. Knuttle, and R. F. Knuttle, "Measurement of optical properties of biological tissues by low coherence interferometry," Appl. Opt. 32, 6032-6042 (1993). [CrossRef] [PubMed]
  27. B. W. Colston Jr, M. J. Everett, U. S. Sathyam, L. B. DaSilva, and L. L. Otis, "Imaging of the oral cavity using optical coherence tomography," Assessment of Oral Health, Monograms in Oral Science, R. V. Faller, ed., (Basel, Karger, 2000), Vol 17, pp 32-55.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited