OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19785–19798

Toy model for plasmonic metamaterial resonances coupled to two-level system gain

Martin Wegener, Juan Luis García-Pomar, Costas M. Soukoulis, Nina Meinzer, Matthias Ruther, and Stefan Linden  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19785-19798 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose, solve, and discuss a simple model for a metamaterial incorporating optical gain: A single bosonic resonance is coupled to a fermionic (inverted) two-level-system resonance via local-field interactions. For given steady-state inversion, this model can be solved analytically, revealing a rich variety of (Fano) absorption/gain lineshapes. We also give an analytic expression for the fixed inversion resulting from gain pinning under steady-state conditions. Furthermore, the dynamic response of the “lasing SPASER”, i.e., its relaxation oscillations, can be obtained by simple numerical calculations within the same model. As a result, this toy model can be viewed as the near-field-optical counterpart of the usual LASER rate equations.

© 2008 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(260.5740) Physical optics : Resonance

ToC Category:

Original Manuscript: September 2, 2008
Revised Manuscript: October 28, 2008
Manuscript Accepted: October 28, 2008
Published: November 14, 2008

Martin Wegener, Juan Luis García-Pomar, Costas M. Soukoulis, Nina Meinzer, Matthias Ruther, and Stefan Linden, "Toy model for plasmonic metamaterial resonances coupled to two-level system gain," Opt. Express 16, 19785-19798 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1,41-48 (2007). [CrossRef]
  2. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007). [CrossRef] [PubMed]
  3. K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep. 444, 101-202 (2007). [CrossRef]
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photon. 1, 224-227 (2008). [CrossRef]
  7. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "A low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  8. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Coherent metamaterials and the lasing spaser," Nature Photon. 2, 351-354 (2008). [CrossRef]
  9. D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402:1-4 (2003). [CrossRef]
  10. M. I. Stockman, "Spasers explained," Nature Photon. 2, 327-329 (2008). [CrossRef]
  11. J. A. Gordon and R. W. Ziolkowski, "The design and simulated performance of a coated nano-particle laser," Opt. Express 15, 2622-2653 (2007). [CrossRef] [PubMed]
  12. S.-W. Chang, C.-Y.A. Ni, and S. L. Chuang, "Theory for bowtie plasmonic nanolasers," Opt. Express 16, 10580-10595 (2008). [CrossRef] [PubMed]
  13. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Negative-Index Metamaterials: Going Optical," IEEE J. Sel. Top. Quantum Electron. 12,1106-1115 (2006). [CrossRef]
  14. A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, "Active metamaterials: Sign of refractive index and gain-assisted dispersion management," Appl. Phys. Lett. 91, 191103 (2007). [CrossRef]
  15. J. A. Gordon and R. W. Ziolkowski, "CNP optical metamaterials," Opt. Express 16, 6692-6716 (2008). [CrossRef] [PubMed]
  16. P. Nezhad, K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072-4079 (2004). [CrossRef] [PubMed]
  17. I. Avrutsky, "Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain," Phys. Rev. B 70, 155416:1-6 (2004).
  18. J. Seidel, S. Grafstroem, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401:1-4 (2005). [CrossRef]
  19. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, "Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium," Opt. Lett. 31, 3022-3024 (2006). [CrossRef] [PubMed]
  20. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2008). [CrossRef]
  21. C. Manolatou and F. Rana, "Subwavelength Nanopatch Cavities for Semiconductor Plasmon Lasers," IEEE J. Quantum Electron. 44, 435-447 (2008). [CrossRef]
  22. W. Schäfer and M. Wegener, Semiconductor Optics and Transport Phenomena (Springer, New York, 2002).
  23. M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, "Lineshape of harmonic generation on metal nanoparticles and metallic Photonic Crystal slabs," Phys. Rev. B 72, 115113:1-12 (2005).
  24. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901:1-4 (2005). [CrossRef]
  25. This software suitable for modern Windows compatible personal computers can be downloaded via www.aph.uni-karlsruhe.de/wegener/de/publikationen and then "Publications 2008".
  26. E. Hecht, Optics (Addison Wesley, 1987)
  27. www.lumerical.com
  28. W. W. Chow, S. W. Koch, and M. SargentIII, Semiconductor-Laser Physics (Springer, New York, 1994). [CrossRef]
  29. M. I. Stockman, "Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality," Phys. Rev. Lett. 98,177404:1-4 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited