OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19821–19829

Phase contrast microscopy with full numerical aperture illumination

Christian Maurer, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19821-19829 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A modification of the phase contrast method in microscopy is presented, which reduces inherent artifacts and improves the spatial resolution. In standard Zernike phase contrast microscopy the illumination is achieved through an annular ring aperture, and the phase filtering operation is performed by a corresponding phase ring in the back focal plane of the objective. The Zernike method increases the spatial resolution as compared to plane wave illumination, but it also produces artifacts, such as the halo- and the shade-off effect. Our modification consists in replacing the illumination ring by a set of point apertures which are randomly distributed over the whole aperture of the condenser, and in replacing the Zernike phase ring by a matched set of point-like phase shifters in the back focal plane of the objective. Experimentally this is done by illuminating the sample with light diffracted from a phase hologram displayed at a spatial light modulator (SLM). The subsequent filtering operation is then done with a second matched phase hologram displayed at another SLM in a Fourier plane of the imaging pathway. This method significantly reduces the halo- and shade-off artifacts whilst providing the full spatial resolution of the microscope.

© 2008 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(090.1760) Holography : Computer holography
(100.5090) Image processing : Phase-only filters
(170.0180) Medical optics and biotechnology : Microscopy
(180.0180) Microscopy : Microscopy

ToC Category:

Original Manuscript: September 11, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: November 7, 2008
Published: November 14, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Christian Maurer, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte, "Phase contrast microscopy with full numerical aperture illumination," Opt. Express 16, 19821-19829 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Zernike, "Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung," Z. Techn. Physik. 16, 454-457 (1935).
  2. R. Barer, "Some Applications of Phase-contrast Microscopy," Quarterly Journal of Microscopic Sciences 88, 491-499 (1947).
  3. P. C. Mogensen and J. Gluckstad, "Dynamic array generation and pattern formation for optical tweezers," Opt. Commun. 175, 7581 (2000). [CrossRef]
  4. J. Gluckstad, D. Palima, P. J. Rodrigo, and C. A. Alonzo, "Laser projection using generalized phase contrast," Opt. Lett. 32, 3281-3283 (2007). [CrossRef] [PubMed]
  5. A. Y. M. Ng, C. W. See, and M. G. Somekh, "Quantitative optical microscope with enhanced resolution using a pixelated liquid crystal spatial light modulator," J. Microsc. 214, 334-304 (2003). [CrossRef]
  6. H. Siedentopf, "Uber das Auflosungsvermogen der Mikroskope bei Hellfeld- und Dunkelfeldbeleuchtung," Z. Wiss. Mikroskopie 32, 1-42 (1915).
  7. H. H. Hopkins and P. M. Barham, "The Influence of the Condenser onMicroscopic Resolution," Proc. Phys. Soc. London Sect. B 63, 737-744 (1950). [CrossRef]
  8. M. Born and H. Wolf, Principles of Optics (Pergamon, London, 1959).
  9. W. Singer, M. Totzeck, and H. Gross, Handbook of Optics - Physical Image Formation ed. H. Gross, (Wiley-vch, Weinheim, 2005).
  10. E. C. Kintner, "Method for the calculation of partially coherent imagery," Appl. Opt. 17, 2747-2753 (1978). [CrossRef] [PubMed]
  11. R. Liang, J. K. Erwin, and M. Mansuripur, "Variation on Zernike’s phase contrast microscope," Appl. Opt. 39,2152-2158 (2000). [CrossRef]
  12. G. Indebetouw and C. Varamit, "Spatial filtering with complementary source-pupil masks," J. Opt. Soc. Am. A 2, 794-798 (1985). [CrossRef]
  13. T. Otaki, "Artifact Halo reduction in Phase Contrast microscopy using Apodization," Opt. Rev. 7, 119-122 (2000). [CrossRef]
  14. S. Furhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Spiral phase microscopy," Adv. Imag. Electron Physics 146,1-56, (2007). [CrossRef]
  15. S. Bernet, A. Jesacher, S. Furhapter, C. Maurer, and M. Ritsch-Marte, "Quantitative imaging of complex samples by spiral phase contrast microscopy," Opt. Express 14, 3792-3805 (2006). [CrossRef] [PubMed]
  16. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral interferometry," Opt. Lett. 30, 1953-1955 (2005). [CrossRef] [PubMed]
  17. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instrum. 69, 1974-1977 (1998). [CrossRef]
  18. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, "Optically controlled three-dimensional rotation of microscopic objects," Appl. Phys. Lett. 82, 829-831 (2003). [CrossRef]
  19. H. Melville, G. Milne, G. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, "Optical trapping of threedimensional structures using dynamic holograms," Opt. Express 11, 3562-3567 (2003). [CrossRef] [PubMed]
  20. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, "Diffractive optical tweezers in the Fresnel regime," Opt. Express 12, 2243-2250 (2004). [CrossRef] [PubMed]
  21. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  22. A description of the Gerchberg-Saxton and other algorithms for hologram calculation is given in B. Kress and P. Meyrueis, "Digital Diffractive Optics," pp. 90-92, John Wiley & Sons Ltd., Chichester, 2000: Briefly, the algorithm starts with a complex image having the desired intensity distribution as its (squared) absolute value, whereas the phase of each pixel is randomized. Using the fast two-dimensional Fourier algorithm the image is transformed into its Fourier (=hologram) plane, resulting again in a complex image with both amplitude and phase modulations. Since the SLM can only display phase values, the image amplitude of each pixel is set to unity, whereas the phase values are maintained, and the resulting pixel array is Fourier back-transformed into the image plane. There the intensity distribution (which is already an approximation of the desired one) is now substituted by the desired image, whereas the phase is maintained, and the whole procedure starts again by Fourier transforming into the hologram plane. After typically less than 10 iterations, the output of this algorithm will be a pure phase hologram, which accurately reconstructs the desired image intensity distribution.
  23. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, "Generation of optical phase singularities by computer-generated holograms," Opt. Lett. 17, 221223 (1992). [CrossRef]
  24. G. A. Swartzlander, Jr., "Peering into darkness with a vortex spatial filter," Opt. Lett. 26, 497-499 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited