OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19844–19849

Fine tuning resonant frequencies for a single cavity defect in three-dimensional layer-by-layer photonic crystal

Preeti Kohli, Jacob Chatterton, Daniel Stieler, Gary Tuttle, Ming Li, Xinhua Hu, Zhuo Ye, and Kai-Ming Ho  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19844-19849 (2008)
http://dx.doi.org/10.1364/OE.16.019844


View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The resonant frequencies of a single cavity embedded in the three-dimensional layer-by-layer photonic crystal are studied with microwave experiments and transfer-scattering matrix method simulations. The effects of the number of cladding layers and the size of the embedded cavity on resonant frequencies and Q values are carefully examined. The fine increments of cavity size indicate a new pattern of relation between resonant frequencies and cavity sizes.

© 2008 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators
(050.5298) Diffraction and gratings : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 7, 2008
Revised Manuscript: October 20, 2008
Manuscript Accepted: October 20, 2008
Published: November 17, 2008

Citation
Preeti Kohli, Jacob Chatterton, Daniel Stieler, Gary Tuttle, Ming Li, Xinhua Hu, Zhuo Ye, and Kai-Ming Ho, "Fine tuning resonant frequencies for a single cavity defect in three-dimensional layer-by-layer photonic crystal," Opt. Express 16, 19844-19849 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19844


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. K. Ho, C. Chan, and C. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  4. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton University Press, 1995).
  5. K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003). [CrossRef]
  6. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, "Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004). [CrossRef] [PubMed]
  7. M. Qi, E. Lidorikis, P. Rakich, S. Johnson, J. Joannopoulos, E. Ippen, and H. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  8. K. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  9. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, and C. Soukoulis, C. Chan, and K. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
  10. E. Ozbay, G. Tuttle, M. Sigalas, C. Soukoulis, and K. Ho, "Defect structures in a layer-by-layer photonic band-gap crystal," Phys. Rev. B 51, 13961-13965 (1995).
  11. T. Asano, B. Song, and S. Noda, "Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 141996-2002 (2006). [CrossRef] [PubMed]
  12. S. Tomljenovic-Hanic, C. Sterke, M. Steel, B. Eggleton, Y. Tanaka, and S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248-17253 (2007). [CrossRef] [PubMed]
  13. Z. Li and L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
  14. M. Li, Z. Li, K. Ho, J. Cao, and M. Miyawaki, "High-efficiency calculations for three-dimensional photonic crystal cavities," Opt. Lett. 31, 262-264 (2006). [CrossRef] [PubMed]
  15. M. Li, X. Hu, Z. Ye, K. Ho, J. Cao, and M. Miyawaki, "Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation," Opt. Lett. 313498-3500 (2006). [CrossRef] [PubMed]
  16. M. Li, X. Hu, Z. Ye, K. Ho, J. Cao, and M. Miyawaki, "Perfectly matched layer absorption boundary condition in planewave based transfer-scattering matrix method for photonic crystal device simulation," Opt. Express 1611548-11554 (2008). [PubMed]
  17. C. Sauvan, P. Lalanne, and J. Hugonin, "Slow-wave effect and mode-profile matching in photonic crystal microcavities," Phys. Rev. B 71, 165118 (2005).
  18. Z. Li and K. Ho, "Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides," Phys. Rev. B 68, 245117 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited