OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19882–19890

A nano-confined source based on surface plasmon Bragg reflectors and nanocavity

Qingyan Wang, Jia Wang, and Shulian Zhang  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19882-19890 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2868 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A type of nano-confined light source based on SPP Bragg reflectors and a nanocavity has been realized. The structures consisting of a nanocavity surrounded by annular grooves are used to obtain a single, localized and non-radiating central peak, which can be used as a nano source. Characterization of the SPP field in the vicinity of the samples with different structural parameters is accomplished by the scanning near-field optical microscope (SNOM), demonstrating the ability of the structures to enhance the peak intensity and to suppress the sidelobes. During 600nm distance away from the sample surface, the FWHM of the central peak is below 285nm (0.45λ), and the modifications of the structural parameters result in at least 1.27 times enhancement of the central peak intensity together with the sidelobe suppression of no more than 73% of the central peak intensity. Numerical simulations based on FDTD method show a good agreement with the experimental results, and give some clues to understand the physical mechanisms behind these phenomena. This type of SPP-based nano source is promising to be applied in near-field imaging, data storage, optical manipulation and localized spectrum detection.

© 2008 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Optics at Surfaces

Original Manuscript: October 10, 2008
Revised Manuscript: November 9, 2008
Manuscript Accepted: November 10, 2008
Published: November 17, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Qingyan Wang, Jia Wang, and Shulian Zhang, "A nano-confined source based on surface plasmon Bragg reflectors and nanocavity," Opt. Express 16, 19882-19890 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991). [CrossRef] [PubMed]
  3. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999). [CrossRef]
  4. K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004). [CrossRef]
  5. E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110-1-3 (2006). [CrossRef]
  6. F. Zenhausern, M. P. O. Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  7. Y. Inouye and S. Kawata, "Near-Field Scanning Optical Microscope With A Metallic Probe Tip," Opt. Lett. 19, 159-161 (1994). [CrossRef] [PubMed]
  8. L. Novotny, D. W. Pohl, and B. Hecht, "Scanning Near-Field Optical Probe With Ultrasmall Spot Size," Opt. Lett. 20, 970-972 (1995). [CrossRef] [PubMed]
  9. T. Grosjean and D. Courjon, "Immaterial tip concept by light confinement," J. Microsc. 202, 273-278 (2001). [CrossRef] [PubMed]
  10. T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003). [CrossRef] [PubMed]
  11. T. Hong, J. Wang, L. Sun, and D. Li, "Numerical simulation analysis of a near-field optical virtual probe," Appl. Phys. Lett. 81, 3452-3454 (2002). [CrossRef]
  12. T. Hong, J. Wang, L. Sun, and D. Li, "Numerical and experimental research on the near-field optical virtual probe," Scanning 26, 57-62 (2004).
  13. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004). [CrossRef]
  14. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005). [CrossRef]
  15. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107-1-3 (2005).
  16. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006). [CrossRef]
  17. K. G. Dmitri, F. P. P. David, W. V. Michael, and Z. Xiang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75, 035431-1-5 (2007).
  18. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002). [CrossRef]
  19. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003). [CrossRef] [PubMed]
  20. J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004). [CrossRef]
  21. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006). [CrossRef]
  22. E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, "A virtual optical probe based on localized surface plasmon polaritons," Opt. Express 13, 7017-7027 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7017. [CrossRef] [PubMed]
  23. B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007). [CrossRef] [PubMed]
  24. G. Yiyang and V. Jelena, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113-1-3 (2007).
  25. C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors," Phys. Rev. B 76, 155109-1-5 (2007).
  26. C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator," Appl. Phys. Lett. 91, 253105-1-3 (2007).
  27. J. C. Weeber, A. Bouhelier, G. ColasdesFrancs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano. Lett. 7, 1352-1359 (2007). [CrossRef] [PubMed]
  28. J. C. Weeber, A. Bouhelier, G. C. d. Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, "Surface-plasmon hopping along coupled coplanar cavities," Phys. Rev. B 76, 113405-1-4 (2007). [CrossRef]
  29. K. Askin, S. S. Senlik, and A. Atilla, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130-1-7 (2008).
  30. C. Ding, X. Hu, P. Jiang, and Q. Gong, "Tunable surface plasmon polariton microcavity," Phys. Rev. A 372, 4536-4538 (2008).
  31. Q. Wang, J. Wang, and S. Zhang, "Confined optical fields based on surface plasmon polaritons," Proc. SPIE 6831, 68310T-1-6 (2007).
  32. Q. Wang, J. Wang, and S. Zhang, "Confined optical field based on surface plasmon polaritons and the interactions with nano-spheres," J. Opt. Soc. Am. B 25, 1096-1104 (2008). [CrossRef]
  33. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge U. Press, Cambridge, 2006).
  34. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited