OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19934–19949

Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer

Shu-Chun Chu, Chao-Shun Yang, and Kenju Otsuka  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19934-19949 (2008)
http://dx.doi.org/10.1364/OE.16.019934


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes a new scheme for generating vortex laser beams from a laser. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p×p vortex array beams from Ince-Gaussian modes, IGe p, p modes. An incident IGe p, p laser beam of variety order p can easily be generated from an end-pumped solid-state laser system with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation, analytically derives the vortex positions of the resulting vortex array laser beams, and discusses beam propagation effects. The resulting vortex array laser beam can be applied to optical tweezers and atom traps in the form of two-dimensional arrays, or used to study the transfer of angular momentum to micro particles or atoms (Bose-Einstein condensate).

© 2008 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 15, 2008
Revised Manuscript: November 11, 2008
Manuscript Accepted: November 12, 2008
Published: November 19, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Shu-Chun Chu, Chao-Shun Yang, and Kenju Otsuka, "Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer," Opt. Express 16, 19934-19949 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. T. Gahagan and G. A. Swartzlander, Jr, "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  2. D. W. Zhang and X.  -. Yuan, "Optical doughnut for optical tweezers," Opt. Lett. 28, 740-742 (2003)
  3. E. Santamato, A. Sasso, B. Piccirillo and A. Vella, "Optical angular momentum transfer to transparent isotropic particles using laser beam carrying zero average angular momentum," Opt. Express 10, 871-878 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-871. [CrossRef] [PubMed]
  4. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001). [CrossRef]
  5. Y. Song, D. Milam, and W. T. Hill, "Long, narrow all-light atom guide," Opt. Lett. 24, 1805-1807 (1999). [CrossRef]
  6. X. Xu, K. Kim, W. Jhe, and N. Kwon, "Efficient optical guiding of trapped cold atoms by a hollow laser beam," Phy. Rev. A 63, 3401 (2001). [CrossRef]
  7. J. Masajada and B. Dubik, "Optical vortex generation by three plane wave interference," Opt. Commun. 198, 21-27 (2001). [CrossRef]
  8. A. Dreischuh, S. Chervenkov, D. Neshev, G. G. Paulus, and H. Walther, "Generation of lattice structures of optical vortices," J. Opt. Soc. Am. B 19, 550-556 (2002) [CrossRef] [PubMed]
  9. P. Kurzynowski and M. Borwińska, "Generation of vortex-type markers in a one-wave setup," Appl. Opt. 46, 676-679 (2007) [CrossRef] [PubMed]
  10. K. J. Moh, X. -. Yuan, W. C. Cheong, L. S. Zhang, J. Lin, B. P. S. Ahluwalia, and H. Wang, "High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate," Appl. Opt. 45, 1153-1161 (2006) [CrossRef]
  11. G. A. Turnball, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, "The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate," Opt. Commun. 127, 183-188 (1996). [CrossRef]
  12. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, "Astigmatic laser mode converters and transfer of orbital angular momentum," Opt. Commun. 96, 123-132 (1993). [CrossRef] [PubMed]
  13. M. Brambilla, L. A. Lugiato, V. Penna, F. Prati, C. Tamm, and C. O. Weiss, "Transverse laser patterns. I. Phase singularity crystals," Phys. Rev. A 43, 5090-5113 (1991). [CrossRef] [PubMed]
  14. J. Scheuer, M. Orenstein, "Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities," Science 285, 230-233 (1999). [CrossRef] [PubMed]
  15. M. A. Bandres and JulioC. Gutiérrez-Vega, "Ince-Gaussian beams," Opt. Lett. 29, 144-146 (2004) [CrossRef]
  16. M. A. Bandres and J. C. Gutiérrez-Vega, "Ince-Gaussian modes of the paraxial wave equation and stable resonators," J. Opt. Soc. Am. A 21, 873-880 (2004). [CrossRef] [PubMed]
  17. M. A. Bandres, "Elegant Ince-Gaussian beams," Opt. Lett. 29, 1724, (2004). [CrossRef]
  18. J. C. Gutiérrez-Vega and M. A. Bandres, "Ince-Gaussian beam in quadratic index medium," J. Opt. Soc. Am. A 22, 306-309, (2005). [CrossRef] [PubMed]
  19. M. A. Bandres and J. C. Gutiérrez-Vega, "Ince-Gaussian series representation of the two-dimensional fractional Fourier transform," Opt. Lett. 30, 540-542 (2005). [CrossRef]
  20. T. Xu and S. Wang, "Propagation of Ince-Gaussian beams in a thermal lens medium," Opt. Commun. 265, 1-5 (2006). [CrossRef]
  21. E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, "Rapidly tunable narrow band wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers," J. Lightwave Technol. 14, 2530-2536 (1996). [CrossRef]
  22. S.-C. Chu, "Generation of multiple vortex beams with specified vortex number from lasers with controlled Ince-Gaussian modes," Jpn. J. Appl. Phys. 47, 5297-5303 (2008)
  23. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000) pp. 105-107 [CrossRef] [PubMed]
  24. M. Endo, M. Kawakami, K. Nanri, S. Takeda and T. Fujioka, "Two-dimensional Simulation of an Unstable Resonator with a Stable Core," Appl. Opt. 38, 3298-3307 (1999). [CrossRef] [PubMed]
  25. M. Endo, "Numerical simulation of an optical resonator for generation of a doughnut-like laser beam," Opt. Express 12, 1959-1965 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1959. [CrossRef] [PubMed]
  26. U. T. Schwarz, M. A. Bandres and J. C. Gutiérrez-Vega, "Observation of Ince-Gaussian modes in stable resonators," Opt. Lett. 29, 1870-1872 (2004)
  27. T. Ohtomo, K. Kamikariya, K. Otsuka, and S. Chu, "Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers," Opt. Express 15, 10705-10717 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10705. [CrossRef] [PubMed]
  28. M. Mansuripur, Classical Optics and its Applications (Cambridge University Press, 2001), p. 200. [CrossRef] [PubMed]
  29. S.-C. Chu, T. Ohtomo, and K. Otsuka, "Generation of donutlike vortex beam with tunable orbital angular momentum from lasers with controlled Hermite-Gaussian modes," Appl. Opt. 47, 2583-2591 (2008) [CrossRef]
  30. Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, D. N. Christodoulides, "Self-Trapping of Dark Incoherent Light Beams," Science 280, 889-892 (1998) [CrossRef]
  31. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992).
  32. P. H. Jones, E. Stride and N. Saffari, "Trapping and manipulation of microscopic bubbles with a scanning optical tweezer," Appl. Phys. Lett. 89, 081113 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited