OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19957–19977

An adaptive smoothness regularization algorithm for optical tomography

P. Hiltunen, D. Calvetti, and E. Somersalo  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19957-19977 (2008)
http://dx.doi.org/10.1364/OE.16.019957


View Full Text Article

Enhanced HTML    Acrobat PDF (1799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In diffuse optical tomography (DOT), the object with unknown optical properties is illuminated with near infrared light and the absorption and diffusion coefficient distributions of a body are estimated from the scattering and transmission data. The problem is notoriously ill-posed and complementary information concerning the optical properties needs to be used to counter-effect the ill-posedness. In this article, we propose an adaptive inhomogenous anisotropic smoothness regularization scheme that corresponds to the prior information that the unknown object has a blocky structure. The algorithm updates alternatingly the current estimate and the smoothness penalty functional, and it is demonstrated with simulated data that the algorithm is capable of locating well blocky inclusions. The dynamical range of the reconstruction is improved, compared to traditional smoothness regularization schemes, and the crosstalk between the diffusion and absorption images is clearly less. The algorithm is tested also with a three-dimensional phantom data.

© 2008 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(100.6950) Image processing : Tomographic image processing
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Processing

History
Original Manuscript: June 19, 2008
Revised Manuscript: October 30, 2008
Manuscript Accepted: November 11, 2008
Published: November 20, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Petri Hiltunen, Daniela Calvetti, and Erkki Somersalo, "An adaptive smoothness regularization algorithm for optical tomography," Opt. Express 16, 19957-19977 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19957


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge, "Optical Tomography in Medical Imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  2. J. Hebden, A. Gibson, R. Yusof, N. Everdell, E. Hillman, D. Delpy, S. Arridge, T. Austin, J. Meek, and J. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-4166 (2002). [CrossRef] [PubMed]
  3. J. Hebden and T. Austin, "Optical tomography of the neonatal brain," Eur. Radiol. 17, 2926-2933 (2007). [CrossRef] [PubMed]
  4. J. Culver, T. Durduran, D. Furya, C. Cheung, J. Greenberg, and A. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003). [CrossRef]
  5. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems (Springer Verlag, 2004).
  6. J. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, "Inverse problems with structural prior information," Inverse Probl. 15, 713-729 (1999). [CrossRef]
  7. B. Pogue, T. McBride, J. Prewitt, U. Sterberg, and K. Paulsen, "Spatially Variant Regularization Improves Diffuse Optical Tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]
  8. A. Douiri, M. Schweiger, J. Riley, and S. Arridge, "Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information," Meas. Sci. Technol. 18, 87-95 (2007). [CrossRef]
  9. B. Brooksby, S. Jiang, C. Kogel, M. Duyley, H. Dehgani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, "Magnetic resonance guided near infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004). [CrossRef]
  10. P. Yalavarthy, B. Pogue, H. Dehgani, C. Carpenter, S. Jiang, and K. Paulsen, "Structural information within regularization matrices improves near infrared diffuse optical tomography," Opt. Express 15, 8043-8058 (2007). [CrossRef] [PubMed]
  11. D. Calvetti, F. Sgallari, and E. Somersalo, "Image inpainting with structural bootstrap priors," Image Vis. Comput.  24, 782-793 (2006) [CrossRef]
  12. D. Calvetti and E. Somersalo, "Microlocal sequential regularization in imaging," Inverse Probl. Imaging 1, 1-11 (2007). [CrossRef]
  13. D. Calvetti and E. Somersalo, "Gaussian hypermodels and recovery of blocky objects," Inverse Probl. 23, 733-754 (2007). [CrossRef]
  14. D. Calvetti and E. Somersalo, "Hypermodels in the Bayesian imaging framework," Inverse Probl.  24, 034013 (2008). [CrossRef]
  15. D. Calvetti, J. P. Kaipio, and E. Somersalo, "Aristotelian prior boundary conditions," Int. J. Math. Comp. Sci. 1, 63-81 (2006).
  16. M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779 - 1792 (1995). [CrossRef] [PubMed]
  17. D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing - Ten Lectures on Subjective Computing (Springer Verlag, 2007). [PubMed]
  18. L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D 60, 259-268 (1992). [CrossRef]
  19. C. R. Vogel and M. E. Oman, "Fast, robust total variation-based reconstruction of noisy, blurred images," IEEE Trans. Image Process. 7, 813-824 (1998). [CrossRef]
  20. P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990). [CrossRef]
  21. D. Calvetti and E. Somersalo, "Recovery of shapes: hypermodels and Bayesian learning," Proc. of the Applied Inverse Problems 2007: Theoretical and Computational Aspects.J. of Physics Conference Series (to appear).
  22. "Automatically Tuned Linear Algebra Software (ATLAS)," http://math-atlas.sourceforge.net/ (19th June 2008).
  23. Y. Saad, Iterative Methods for Sparse Linear Systems (Society for Industrial Mathematics, 2003). [CrossRef]
  24. I. Nissilä, J. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Järvenpää, L. Lipiäinen, and T. Katila, "Comparison between a time-domain and a frequency-domain system for optical tomography," J. Biomed Opt. 11, 064015 (2006). [CrossRef]
  25. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, "Finite element model for the coupled radiative transfer equation and diffusion approximation," Int. J. Numer. Methods Eng. 63, 383-405 (2006). [CrossRef]
  26. J. Heino, E. Somersalo, and J. Kaipio, "Statistical compensation of geometric mismodeling in optical tomography," Opt. Express 13, 296-308 (2005). [CrossRef] [PubMed]
  27. S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006). [CrossRef]
  28. J. P. Kaipio and E. Somersalo, "Statistical inverse problems: discretization, model reduction and inverse crimes," J. Comp. Appl. Math. 22, 493-504 (2006).
  29. C. Paige and M. Saunders, "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares," ACM Trans. Math. Software 8,43-71 (1982). Comput. 24, 782-793 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited