OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19995–20007

Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens

Shong-Leih Lee and Chao-Fu Yang  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19995-20007 (2008)
http://dx.doi.org/10.1364/OE.16.019995


View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is very difficult to fabricate tunable optical systems having an aperture below 1000 micrometers with the conventional means on macroscopic scale. Krogmann et al. (J. Opt. A 8, S330-S336, 2006) presented a MEMS-based tunable liquid micro-lens system with an aperture of 300 micrometers. The system exhibited a tuning range of back focal length between 2.3mm and infinity by using the electrowetting effect to change the contact angle of the meniscus shape on silicon with a voltage of 0–45V. However, spherical aberration was found in their lens system. In the present study, a numerical simulation is performed for this same physical configuration by solving the Young-Laplace equation on the interface of the lens liquid and the surrounding liquid. The resulting meniscus shape produces a back focal length that agrees with the experimental observation excellently. To eliminate the spherical aberration, an electric field is applied on the lens. The electric field alters the Young-Laplace equation and thus changes the meniscus shape and the lens quality. The numerical result shows that the spherical aberration of the lens can be essentially eliminated when a proper electric field is applied.

© 2008 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(220.1250) Optical design and fabrication : Aspherics
(230.2090) Optical devices : Electro-optical devices

History
Original Manuscript: August 1, 2008
Revised Manuscript: November 18, 2008
Manuscript Accepted: November 18, 2008
Published: November 20, 2008

Citation
Shong-Leih Lee and Chao-Fu Yang, "Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens," Opt. Express 16, 19995-20007 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Berge and J. Peseux, "Variable Focal Lens Controlled by an External Voltage: an Application of Electrowetting," Eur. Phys. J. E 3, 159-163 (2000). [CrossRef]
  2. C.-C. Cheng and J. A. Yeh, "Dielectrically Actuated Liquid Lens," Opt. Express 15, 7140-7145 (2007). [CrossRef] [PubMed]
  3. B. Berge, "Liquid Lens Technology: Principle of Electrowetting Based Lenses and Applications to Image," Proceedings of the 18th IEEE Int. Conf. on Micro Electro Mechanical Systems (2005), pp. 227-230.
  4. S. Kuiper and B. H. W. Hendriks, "Variable-Focus Liquid Lens for Miniature Cameras," Appl. Phys. Lett. 85, 1128-1130 (2004). [CrossRef]
  5. B. H. W. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders and T. W. Tukker, "Electrowetting-Based Variable-Focus Lens for Miniature Systems," Opt. Rev. 12, 255-259 (2005). [CrossRef]
  6. F. Krogmann, W. Monch, and H. Zappe, "A MEMS-Based Variable Micro-Lens System," J. Opt. A, Pure Appl. Opt. 8, S330-S336 (2006). [CrossRef]
  7. T. Sarpkaya, "Vorticity, free surface and surfactants," Annu. Rev. Fluid Mech. 28, 83-128 (1996). [CrossRef]
  8. S.-L. Lee and H.-D. Lee, "Evolution of Liquid Meniscus Shape in a Capillary Tube," ASME J. Fluids Eng. 129, 957-965 (2007). [CrossRef]
  9. S.-L. Lee and W.-B. Tien, "Growth and Detachment of Carbon Dioxide Bubbles on a Horizontal Porous Surface with a Uniform Mass Injection," Int. J. Heat Mass Transfer (accepted for publication).
  10. B. Berge, "Electrocapillarite et Mouillage de Films Isolant par l’eau," C. R. Acad. Sci. Paris III 317, 157-163 (1993).
  11. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), Chap. 10.
  12. A. Bateni, S. S. Susnar, A. Amirfazli and A. W. Neumann, "Development of a New methodology to Study Drop Shape and Surface Tension in Electric Fields," Langmuir 20, 7589-7597 (2004). [CrossRef] [PubMed]
  13. A. Bateni, A. Ababneh, J. A. W. Elliott, A. W. Neumann and A. Amirfazli, "Effect of Gravity and Electric Field on Shape and Surface Tension of Drops," Adv. Space Res. 36, 64-69 (2005). [CrossRef]
  14. C.-C. Cheng, C. A. Chang, C. G. Tsai, C.-L. Peng and J. A. Yeh, "A Dielectrically Driven Liquid Lens with Optical Packaging," IEEE/LEOS Int. Conf. on Optical MENS and Nanophotonics, pp. 65-66 (2007).
  15. S. L. Lee and C. R. Ou, "Integration Scheme for Elastic Deformation and Stresses," ASME J. Appl. Mech. 66, 978-985 (1999). [CrossRef]
  16. S. L. Lee and S. R. Sheu, "A New Formulation for Incompressible Viscous Free Surface Flow without Smearing the Free Surface," Int. J. Heat Mass Transfer 44, 1837-1848 (2001). [CrossRef]
  17. J. R. Sparrow, R. Ortiz, P. R. Macleish and S. Chang, "Fibroblast Behavior at Aqueous Interfaces with Perfluorocarbon, Silicone, and Fluorosilicone Liquids," Invest. Ophthalmol. Visual Sci. 31, 638-646 (1990).
  18. G. A. Peyman, J. A. Schulman and B. Sullivan, "Perfluorocarbon Liquids in Ophthalmology," Surv. Ophthalmol. 39, 375-395 (1995). [CrossRef] [PubMed]
  19. H. Hoerauf, K. Kobuch, J. Dresp and D.-H. Menz, "Combined use of Partially Fluorinated Alkanes, Perfluorocarbon Liquids and Silicon Oil: an Experimental Study," Graefe’s Arch. Clin. Exp. Ophthalmol. 239, 373-381 (2001). [CrossRef]
  20. K. Kobuch, D. H. Menz, H. Hoerauf, J. H. Dresp and V.-P. Gabel, "New Substances for Intraocular Tamponades: Perfluorocarbon Liquids, Hydrofluorocarbon Liquids and Hydrofluorocarbon-Oligomers in Vitreoretinal Surgery," Graefe’s Arch. Clin. Exp. Ophthalmol. 239, 635-642 (2001). [CrossRef]
  21. M. Vallet, M. Vallade and B. Berge, "Limiting Phenomena for the Spreading of Water on Polymer Films by Electrowetting," Eur. Phys. J. B 11, 583-591 (1999). [CrossRef]
  22. V. Peykov, A. Quinn, and J. Ralston, "Electrowetting: a Model for Contact-Angle Saturation," Colloid Polym. Sci. 278, 789-793 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited