OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 20029–20037

Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure

Douglas J. Little, Martin Ams, Peter Dekker, Graham D. Marshall, Judith M. Dawes, and Michael J. Withford  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 20029-20037 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A femtosecond laser with a 1 kHz repetition rate and two different polarization states was used to fabricate low-loss waveguides in fused silica. Investigations of chemically-mechanically polished waveguide regions using near-field scanning optical microscopy revealed the presence of modifications outside the glass regions directly exposed to a circularly polarized writing laser. These waveguides also exhibited refractive index contrast up to twice as large as that of waveguides written with linearly polarized radiation. The observed differences in refractive index were shown by Raman spectroscopy to correlate to an increased concentration of 3-member silicon-oxygen ring structures. We propose that the observed differences in material properties are due to the polarization dependence of photo-ionization rates in fused silica.

© 2008 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes
(230.7370) Optical devices : Waveguides
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Ultrafast Optics

Original Manuscript: September 26, 2008
Revised Manuscript: November 6, 2008
Manuscript Accepted: November 6, 2008
Published: November 20, 2008

Douglas J. Little, Martin Ams, Peter Dekker, Graham D. Marshall, Judith M. Dawes, and Michael J. Withford, "Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure," Opt. Express 16, 20029-20037 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing Waveguides in Glass with a Femtosecond Laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  2. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared Photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999). [CrossRef]
  3. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001). [CrossRef]
  4. A. M. Streltsov and N. F. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002). [CrossRef]
  5. M. Will, S. Nolte, B. N. Chichkov, and A. Tuennermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002). [CrossRef] [PubMed]
  6. G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide-Bragg gratings in bulk fused silica," Opt. Lett. 31, 2690-2691 (2006). [CrossRef] [PubMed]
  7. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003). [CrossRef]
  8. M. Ams, G. D. Marshall, D. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005). [CrossRef] [PubMed]
  9. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, "Direct femtosecond laser writing of waveguides in As2S3 thin films," Opt. Lett. 29, 748-750 (2004). [CrossRef] [PubMed]
  10. R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005). [CrossRef]
  11. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, "Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating," Opt. Lett. 33, 956-958 (2008). [CrossRef] [PubMed]
  12. R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002). [CrossRef]
  13. L. Gui, B. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1379 (2004). [CrossRef]
  14. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tuennermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007). [CrossRef]
  15. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tuennermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005). [CrossRef] [PubMed]
  16. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003). [CrossRef] [PubMed]
  17. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica," Opt. Lett. 30, 1867-1869 (2005). [CrossRef] [PubMed]
  18. M. Ams, G. D. Marshall, and M. J. Withford, "Study of the influence of femtosecond laser polarisation on direct writing of waveguides," Opt. Express 14, 13158-13163 (2006). [CrossRef] [PubMed]
  19. A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006). [CrossRef] [PubMed]
  20. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001). [CrossRef]
  21. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003). [CrossRef]
  22. A. Pasquarello and R. Car, "Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica," Phys. Rev. Lett. 80, 5145-5147 (1998). [CrossRef]
  23. A. E. Geissberger and F. L. Galeener, "Raman studies of vitreous SiO2 versus fictive temperature," Phys. Rev. B 28, 3266-3271 (1983). [CrossRef]
  24. M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999). [CrossRef]
  25. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, "Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization," Phys. Rev. Lett. 97, 237403 (2006). [CrossRef]
  26. D. Liu, Y. Li, M. Liu, H. Yang and Q. Gong, "The polarization-dependence of femtosecond damage threshold inside fused silica," Appl. Phys. B 91, 597-599 (2008). [CrossRef]
  27. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides.," Opt. Express 16, 9443-9458 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited