OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 20073–20080

Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment

Jiafang Li, Baohua Jia, and Min Gu  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 20073-20080 (2008)
http://dx.doi.org/10.1364/OE.16.020073


View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is reported for improving the spatial resolution and engineering the stop gaps of the inorganic-organic 3D woodpile photonic crystals (PhCs). The approach is based on the two-photon polymerization (2PP) of an inorganic-organic hybrid material and a post-thermal treatment (PTT) process. The effects of PTT on polymerized 1D, 2D and 3D structures have been characterized. Ultimately, the feature size of the suspended rods has been reduced to ~33 nm and the spatial resolution of inorganic-organic 3D woodpile PhCs has been improved from ~150 nm to ~86 nm. The approach is also demonstrated as a powerful tool to engineer the stop gaps of 3D PhCs. In particular, a combination of PTT and the threshold fabrication technique leads to the stop gap of a 3D woodpile PhC that can be tuned over a large wavelength range of ~318 nm from the near-infrared to visible region.

© 2008 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: October 27, 2008
Revised Manuscript: November 13, 2008
Manuscript Accepted: November 14, 2008
Published: November 20, 2008

Citation
Jiafang Li, Baohua Jia, and Min Gu, "Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment," Opt. Express 16, 20073-20080 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20073


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  2. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  3. S. Wu, J. Serbin, and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," J. Photochem. Photobiol., A 181, 1-11 (2006). [CrossRef]
  4. M. Straub and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt. Lett. 27, 1824-1825 (2002). [CrossRef]
  5. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef] [PubMed]
  6. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005). [CrossRef]
  7. L. H. Nguyen, M. Straub, and M. Gu, "Acrylate-based photopolymer for two-photon microfabrication and photonic applications," Adv. Funct. Mater. 15, 209-216 (2005). [CrossRef]
  8. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006). [CrossRef]
  9. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003). [CrossRef] [PubMed]
  10. J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006). [CrossRef] [PubMed]
  11. N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
  12. B. Jia, S. Wu, J. Li, and M. Gu, "Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process," J. Appl. Phys. 102, 096102 (2007). [CrossRef]
  13. K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 1 (2005). [CrossRef]
  14. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005). [CrossRef]
  15. D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007). [CrossRef]
  16. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007). [CrossRef]
  17. W.  Haske, V. W.  Chen, J. M.  Hales, W. T.  Dong, S.  Barlow, S. R.  Marder, and J. W.  Perry, "65 nm feature sizes using visible wavelength 3-D multiphoton lithography," Opt. Express  15, 3426-3436 (2007). [CrossRef] [PubMed]
  18. Y. Jun, P. Nagpal, and D. J. Norris, "Thermally stable organic-Inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing," Adv. Mater. 20, 606-610 (2008). [CrossRef]
  19. J. Serbin and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006). [CrossRef]
  20. J. Serbin and M. Gu, "Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization," Opt. Express 14, 3563-3568 (2006). [CrossRef] [PubMed]
  21. J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007). [CrossRef]
  22. J. Li, B. Jia, G. Zhou, and M. Gu, "Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal," Appl. Phys. Lett. 91, 254101 (2007). [CrossRef]
  23. R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001). [CrossRef]
  24. R. Mohamed, N. Razali, A. A. Ehsan, and S. Shaari, "Characterisation and process optimisation of photosensitive acrylates for photonics applications," Sci. Technol. Adv. Mater. 6, 375-382 (2005). [CrossRef]
  25. B. Lange, J. Wagner, and R. Zentel, "Fabrication of robust high-quality ORMOCER® inverse opals," Macromol. Rapid Commun. 27, 1746-1751 (2006). [CrossRef]
  26. T. Kerle, Z. Lin, H. -C. Kim, and T. P. Russell, "Mobility of polymers at the air/polymer interface," Macromol. 34, 3484-3492 (2001). [CrossRef]
  27. Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited