OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 20099–20105

Polarization effects in a highly birefringent nonlinear photonic crystal fiber with two-zero dispersion wavelengths

Brendan J. Chick, JamesW.M. Chon, and Min Gu  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 20099-20105 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (715 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical and experimental study is presented on polarized pulsed propagation from a highly birefringent nonlinear photonic crystal fiber with two-zero dispersion wavelengths. Experimental observations show that the input polarization state can maintain its linearity and that the fiber birefringence creates different spectral properties dependent on the input polarization orientation. The most extensive spectra are obtained for a coupling polarization angles aligned with the fast and slow axis, which is created by the high-order dispersion and Kerr nonlinearity.

© 2008 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.5430) Physical optics : Polarization

ToC Category:
Nonlinear Optics

Original Manuscript: September 3, 2008
Revised Manuscript: November 11, 2008
Manuscript Accepted: November 16, 2008
Published: November 21, 2008

Brendan J. Chick, James W. Chon, and Min Gu, "Polarization effects in a highly birefringent nonlinear photonic crystal fiber with two-zero dispersion wavelengths," Opt. Express 16, 20099-20105 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  3. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). [CrossRef] [PubMed]
  4. Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  5. J. E. Morris, A. E. Carruthers, M. Mazilu, P. J. Reece, T. Cizmar, P. Fischer, and K. Dholakia, "Optical micromanipulation using supercontinuum Laguerre Gaussian and Gaussian beams," Opt. Express 16, 1011-10129 (2008). [CrossRef]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  7. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett.,  11, 674-676, (1999). [CrossRef]
  8. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F.G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature,  474, 511-515 (2003). [CrossRef]
  9. T. V. Andersen, K. M. Hilligs e, C. K. Nielsen, J Th gersen, K. P. Hansen, S. R. Keiding, and J. J Larsen, "Continous-wave wavelength conversion in a photonics crystal fiber with two zero-dispersion wavelengths," Opt. Express 124113-4122 (2004). [CrossRef] [PubMed]
  10. Z. Zhu and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B,  21, 248-257, 2004. [CrossRef]
  11. Z. Zhu and T. G. Brown, "Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber," Opt. Express 12, 791-796 (2004). [CrossRef] [PubMed]
  12. R. H. Stolen and C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A,  17, 1448-1453 (1978). [CrossRef]
  13. M. Miyagi and S. Nishida, "Pulse spreading in a single-mode fiber due to third-order dispersion," Appl. Opt. 18, 678- 682 (1979). [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear fiber optics 3rd ed. (Academic San Diego, Calif., 2002).
  15. S. Coen, A. H. L. Chau, R. Leohardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in phototonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  16. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibres," Opt. Express 12, 124-135 (2004). [CrossRef] [PubMed]
  17. M. J. Steel, T. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 448 (2001). [CrossRef]
  18. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, 2001, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultra broadband optical pulses in a fused-silica fiber," IEEE J. Quant. Electron. 37, 398-404 (2001). [CrossRef]
  19. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quant. Electron,  25, 2665-2673 (1989). [CrossRef]
  20. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev.Lett.,  88, 173901 (2002). [CrossRef] [PubMed]
  21. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Mod. Phys. Rev.,  78, 113-1184 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited