OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 20142–20148

Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot

Ruoxi Yang, Mustafa A.G. Abushagur, and Zhaolin Lu  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 20142-20148 (2008)
http://dx.doi.org/10.1364/OE.16.020142


View Full Text Article

Enhanced HTML    Acrobat PDF (195 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent work demonstrated light transmission through deep subwavelength slits or coupling light into waveguides with deep subwavelength dimension only in one direction. In this paper, we propose an approach to squeeze light (λ=1550 nm) from a dielectric waveguide into a deep subwavelength spot. Vertical confinement is achieved by efficiently coupling light from a dielectric waveguide into a 20-nm metal-dielectric-metal plasmonic waveguide. The horizontal dimension of the plasmonic waveguide is then tapered into 20 nm. Numerical simulation shows that light fed from a dielectric waveguide can be squeezed into a 21nm-by-24nm spot with efficiency 62%.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: October 6, 2008
Revised Manuscript: November 10, 2008
Manuscript Accepted: November 11, 2008
Published: November 21, 2008

Citation
Ruoxi Yang, Mustafa A. Abushagur, and Zhaolin Lu, "Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot," Opt. Express 16, 20142-20148 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006). [CrossRef] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824 (2003). [CrossRef]
  3. P. Ginzburg, D. Arbel, and M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288 (2006). [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998). [CrossRef]
  5. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  6. H. J. Lezec,  et al., "Beaming Light from a Subwavelength Aperture," Science 297, 820 (2002). [CrossRef] [PubMed]
  7. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005). [CrossRef] [PubMed]
  8. J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999). [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005). [CrossRef] [PubMed]
  10. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  11. E. Verhagen, A. Polman, and L. (K.) Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45 (2008). [CrossRef] [PubMed]
  12. G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211 (2007). [CrossRef] [PubMed]
  13. P. Ginzburg, and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching," Opt. Express 15, 6762, (2007). [CrossRef] [PubMed]
  14. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005). [CrossRef] [PubMed]
  15. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006). [CrossRef]
  16. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  17. P. B. Johnson and R. W. Christy, "Optical Constants of Noble metals," Phys Rev B 6, 4370 (1972). [CrossRef]
  18. FDTD Solutions-Release 5.0, Lumerical Solutions, Inc, Vancouver, British Columbia, Canada.
  19. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006). [CrossRef]
  20. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006) [CrossRef] [PubMed]
  21. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359 (2005). [CrossRef]
  22. G. Veronis and S. Fan, "Modes of Subwavelength Plasmonic Slot Waveguides," J. Lightwave Technol. 25, 2511 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited