OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20206–20214

Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes.

Alireza Hassani and Maksim Skorobogatiy  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20206-20214 (2008)
http://dx.doi.org/10.1364/OE.16.020206


View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmon-like excitation at the interface between fully polymeric fiber sensor and gaseous analyte is demonstrated theoretically in terahertz regime. Such plasmonic excitation occurs on top of a ~30µm ferroelectric PVDF layer wrapped around a subwavelength porous polymer fiber. In a view of designing a fiber-based sensor of analyte refractive index, phase matching of a plasmon-like mode with the fundamental core guided mode of a low loss porous fiber is then demonstrated for the challenging case of a gaseous analyte. We then demonstrate the possibility of designing high sensitivity sensors with amplitude resolution of 3.4·10-4 RIU, and spectral resolution of 1.3·10-4 RIU in THz regime. Finally, novel sensing methodology based on detection of changes in the core mode dispersion is proposed.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(040.2235) Detectors : Far infrared or terahertz
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Integrated Optics

History
Original Manuscript: August 8, 2008
Revised Manuscript: November 12, 2008
Manuscript Accepted: November 13, 2008
Published: November 24, 2008

Citation
Alireza Hassani and Maksim Skorobogatiy, "Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes," Opt. Express 16, 20206-20214 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Agranovich and D. L. Mills, Surface Polaritons - Electromagnetic Waves at Surfaces and Interfaces (North-Holland, Amsterdam, 1982).
  2. J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995). [CrossRef]
  3. A. Hassani and M. Skorobogatiy, "Design criteria for the Microstructured Optical Fiber-based Surface Plasmon Resonance sensors," J. Opt. Soc. Am. B 24, 1423-1429 (2007). [CrossRef]
  4. M. Skorobogatiy and A. V. Kabashin, "Photon Crystal waveguide-based surface plasmon resonance bio-sensor," Appl. Phys. Lett. 89, 143518-143521 (2006). [CrossRef]
  5. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007). [CrossRef] [PubMed]
  6. D. Wu, N. Fang, C. Sun and X. Zhang, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003). [CrossRef]
  7. M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583-7588 (2005). [CrossRef] [PubMed]
  8. J.F. O’Hara and R. D. Averitt, "Prism coupling to terahertz surface plasmon polaritons," Opt. Express 13, 6117-6126 (2005). [CrossRef] [PubMed]
  9. K. Wang and D. M. Mittleman, "Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range," Phys. Rev. Lett. 96, 157401-147404 (2006). [CrossRef] [PubMed]
  10. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006). [CrossRef] [PubMed]
  11. J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006). [CrossRef]
  12. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006). [CrossRef] [PubMed]
  13. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805-176807 (2006). [CrossRef] [PubMed]
  14. F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, "Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals," Opt. Express 15, 14804-14809 (2007). [CrossRef] [PubMed]
  15. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  16. J. B. Pendry, A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998). [CrossRef]
  17. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF Cladding Terahertz Waveguide," J. Lightwave Technol. 23, 2469-2475 (2005). [CrossRef]
  18. Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49, 513-517 (2006).
  19. M. Skorobogatiy, A. Dupuis, A. Hassani, and N. Guo, "Designs of porous polymer THz fibers," Proceedings SPIE 6892, 51 (2008).
  20. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett. 92, 071101 (2008). [CrossRef]
  21. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008). [CrossRef] [PubMed]
  22. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, pp. 1175-1198, (2003) [CrossRef] [PubMed]
  23. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, pp. 10851-64, (2006) [CrossRef] [PubMed]
  24. S. A. Harmon and R. A. Chevillea, "Part-per-million gas detection from long-baseline THz spectroscopy," Appl. Phys. Lett. 85, 2128-2130, (2004) [CrossRef]
  25. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998) [CrossRef]
  26. R. Guo, K. Akiyama, H. Minamide, and H. Ito, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-9, (2007) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited