OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20227–20240

Extremely short-length surface plasmon resonance devices

Maxim L. Nesterov, Alexandre V. Kats, and Sergei K. Turitsyn  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 20227-20240 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (615 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The impact of the system design on the control of coupling between planar waveguide modes and surface plasmon polaritons (SPP) is analyzed. We examine how the efficiency of the coupling can be enhanced by an appropriate dimensioning of a multi-layer device structure without using additional gratings. We demonstrate that by proper design the length of the device can be dramatically reduced through fabrication a surface plasmon resonance sensor based on the SPP-photon transformation rather then on SPP dissipation.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: August 14, 2008
Revised Manuscript: November 12, 2008
Manuscript Accepted: November 15, 2008
Published: November 24, 2008

Maxim L. Nesterov, Alexandre V. Kats, and Sergei K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express 16, 20227-20240 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons (Springer-Verlag, New York, 1988).
  2. V. M. Agranovich and D. L. Mills, Surface Polaritons, (Nauka, Moscow, 1985).
  3. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmons polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003). [CrossRef]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 (2005). [CrossRef]
  5. S. I. Bozhevolnyi and V. M. Shalaev, "Nanophotonics with Surface Plasmons," Photonics Spectra, Part I,  58; Part II, 68 (2006).
  6. M. I. Stockman, "Electromagnetic Theory of SERS," in Springer Series Topics in Applied Physics,edited by K. Kneipp, M. Moskovits and H. Kneipp, Surface Enhanced Raman Scattering Physics and Applications (Springer-Verlag, Heidelberg New York Tokyo, 2006).
  7. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999). [CrossRef]
  8. J. Homola, "Present and future of surface plasmon resonance biosensors (review)," Anal. Bioanal. Chem. 377, 528-539 (2003). [CrossRef] [PubMed]
  9. P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116 (2006). [CrossRef]
  10. R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999). [CrossRef] [PubMed]
  11. R. D. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sens. Act. B 29, 261-267 (1995). [CrossRef]
  12. H. J. M. Kreuwel, P. V. Lambeck, J. M. N. Beltman, and T. J. A. Popma (1987) "Modecoupling in multilayer structures applied to a chemical sensor and a wavelength selective directional coupler," Proc. ECIO’87 (Glasgow, 11-13 May) pp. 217-220.
  13. V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007). [CrossRef]
  14. A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Polarization properties of a periodically-modulated metal film in regions of anomalous optical transparency," Phys. Rev. B. 72, 193405 (2005). [CrossRef]
  15. A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Excitation of surface plasmon-polaritons in metal films with double periodic modulation: Anomalous optical effects," Phys. Rev. B. 76, 045413 (2007). [CrossRef]
  16. S. I. Bozhevolnyi, J. E., K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008 - 3011 (2001). [CrossRef] [PubMed]
  17. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol.  23, 413-422 (2005) [CrossRef]
  18. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  19. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007). [CrossRef]
  20. G. Nemova, A. V. Kabashin, and R. Kashyap, "Surface plasmon-polariton Mach-Zehnder refractive index sensor," J. Opt. Soc. Am. B 25, 1673-1677 (2008). [CrossRef]
  21. G. Stewart et al., "Surface plasmon resonances in thin metal films for optical fiber devices," in Proc. Optical Fiber Sensors, Washington, DC, 1988, pp. 328-331.
  22. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-44 (1990). [CrossRef]
  23. J. Homola and R. Slavík, "Fibre-Optic Sensor based on Surface Plasmon Resonance," Electronics Letters 32, 480 (1996). [CrossRef]
  24. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007) [CrossRef] [PubMed]
  25. G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82, (2007). [CrossRef]
  26. Y. Y. Shevchenko and J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett. 32, 211-213 (2007) [CrossRef] [PubMed]
  27. M. Skorobogatiy and A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006). [CrossRef]
  28. M. Skorobogatiy and A. Kabashin "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419-8424 (2006). [CrossRef] [PubMed]
  29. H. Ditlbacher, N. Galler, D.M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn "Coupling dielectric waveguide modes to surface plasmon polaritons," Opt. Express 16, 10455-10464 (2008). [CrossRef] [PubMed]
  30. T. Nakano, K. Baba, and M. Miyagi, "Insertion loss and extinction ratio of a surface plasmon- polariton polarizer: theoretical analysis," J. Opt. Soc. Am. B 11, 2030-2035 (1994) [CrossRef]
  31. C-H Chen and L. Wang, "Design of Finite-length metal-clad optical waveguide polarizer," IEEE J. Quantum Electron. 34, 1089-97 (1998). [CrossRef]
  32. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Influence of material properties on extraordinary optical transmission through hole arrays," Phys. Rev. B. 77, 075401 (2008). [CrossRef]
  33. E. D. Palik, Handbook of Optical Constants and Solids, (Academic, Orlando, 1985).
  34. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983). [CrossRef]
  35. Katsunari Okamoto, Fundamentals of Optical Waveguides (Academic Press, first Edition, 2000).
  36. Poche Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988).
  37. A. Yariv, Quantum Electronics (John Wiley & Sons, New York, 1975).
  38. J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999). [CrossRef]
  39. Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, "Influence of Design Parameters on the Performance of a Surface Plasmon Resonance Based Fiber Optic Sensor," Plasmonics 379-86 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited