OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20283–20294

Space-time coherence of polychromatic propagation-invariant fields

Jari Turunen  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20283-20294 (2008)
http://dx.doi.org/10.1364/OE.16.020283


View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polychromatic stationary propagation-invariant fields with complete spatial coherence in the space-frequency domain are considered. In general, the field is shown to be spatially partially coherent in the space-time domain, apart from transversely achromatic fields with complete transverse coherence. Particular attention is paid to fields that possess the same cone angle at each frequency; these are stationary counterparts of pulsed conical fields known as X waves. It is shown that, for such fields, the radius of the space-time-domain transverse coherence area depends critically on the bandwidth of the power spectrum and can be comparable to the central-lobe radius of the monochromatic field component at the peak frequency of the spectrum.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(070.3185) Fourier optics and signal processing : Invariant optical fields
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: September 23, 2008
Revised Manuscript: October 27, 2008
Manuscript Accepted: October 28, 2008
Published: November 24, 2008

Citation
Jari Turunen, "Space-time coherence of polychromatic propagation-invariant fields," Opt. Express 16, 20283-20294 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Durnin, "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, Jr. and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]
  3. F. Gori, G. Guattari, and C. Padovani, "Bessel-Gauss beams," Opt. Commun. 64, 491-495 (1987). [CrossRef]
  4. J. Durnin and J. H. Eberly, US Patent 4,887,885 (1989).
  5. G. Indebetouw, "Nondiffracting optical fields: some remarks on their analysis and synthesis," J. Opt. Soc. Am. A 6, 150-152 (1989). [CrossRef]
  6. A. Vasara, J. Turunen, and A. T. Friberg, "Realization of general nondiffracting beams using computer-generated holograms," J. Opt. Soc. Am. A 6, 1748-1754 (1989). [CrossRef] [PubMed]
  7. S. R. Mishra, "A vector wave analysis of a bessel beam," Opt. Commun. 85, 159-161 (1991). [CrossRef]
  8. J. Turunen and A. T. Friberg, "Self-imaging and propagation-invariance in electromagnetic fields," Pure Appl. Opt. 2, 51-60 (1993). [CrossRef]
  9. Z. Bouchal and M. Olivík, "Non-diffractive vector Bessel beams," J. Mod. Opt. 42, 1555-1666 (1995). [CrossRef]
  10. J. Turunen, A. Vasara, and A. T. Friberg, "Propagation-invariance and self-imaging in variable-coherence optics," J. Opt. Soc. Am. A 8, 282-289 (1991). [CrossRef]
  11. K. B. Wolf, "Diffraction-free beams remain diffraction free under all paraxial optical transformations," Phys. Rev. Lett. 60, 757-759 (1988). [CrossRef] [PubMed]
  12. A. T. Friberg, A. Vasara, and J. Turunen, "Partially coherent propagation-invariant fields: passage through paraxial optical systems," Phys. Rev. A 43, 7079-7082 (1991). [CrossRef] [PubMed]
  13. J. A. Campbell and S. Soloway, "Generation of a nondiffracting beam with frequency- independent beamwidth," J. Acoust. Soc. Am. 88, 2467-2477 (1990). [CrossRef]
  14. P. L. Overfelt, "Bessel-Gauss pulses," Phys. Rev. A 44, 3941-3947 (1991). [CrossRef] [PubMed]
  15. J. Lu and J. F. Greenleaf, "Nondiffractiong X waves — Exact solutions to free-space wave equation and their finite-aperture realizations," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 90, 19-31 (1992). [CrossRef]
  16. J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, "Angular spectrum representation of nondiffarcting X waves, Phys. Rev. E 54, 4347-4352 (1996). [CrossRef]
  17. P. Saari and K. Reivelt, "Evidence of X-shaped propagation-invariant localized light," Phys. Rev. Lett. 79, 4135-4138 (1997). [CrossRef]
  18. J. N. Brittingham; "Focus wave modes in homogeneous Maxwell’s equations: Transverse electric mode," J. Appl. Phys. 54, 1179-1189 (1983). [CrossRef]
  19. A. Sezginer, "A general formulation of focus wave modes," J. Appl. Phys. 57, 678-683 (1985). [CrossRef]
  20. I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation," J. Math. Phys. 30, 1254-1269 (1989). [CrossRef]
  21. A. M. Shaarawi, "Comparison of two localized wave fields generated from dynamic apertures," J. Opt. Soc. Am. A 14, 1804-1816 (1997). [CrossRef]
  22. Z. Bouchal, "Nondiffracting optical beams: physical properties, experiments, ans applications," Czech. J. Phys. 53, 537-578 (2003). [CrossRef]
  23. D. McGloin and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005). [CrossRef]
  24. P. Fischer, C. T. A. Brown, J. E. Morris, C. López-Mariscal, E. M. Wright, W. Sibbett, and K. Dholakia, "White light propagation invariant beams," Opt. Express 13, 6657-6666 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6657. [CrossRef] [PubMed]
  25. P. Fischer, H. Little, R. L. Smith, C. López-Mariscal, C. T. A. Brown, W. Sibbett, and K. Dholakia, "Wavelength dependent propagation and reconstruction of white light Bessel beams," J. Opt. A 8, 477-482 (2006). [CrossRef]
  26. E. Wolf, "New theory of partial coherence in space-frequency domain: spectra and cross-spectra of steady-state sources," J. Opt. Soc. Am. 72, 343-351 (1982). [CrossRef]
  27. L. Mandel and E. Wolf, "Complete coherence in the space-frequency domain," Opt. Commun. 36, 247-249 (1981). [CrossRef]
  28. L. Mandel and E. Wolf, Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
  29. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McDonnell, A. J. Wright, and J. M. Girkin, "Generation of achromatic Bessel beams using a compensated spatial light modulator," Opt. Express 14, 5581-5587 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5581. [CrossRef] [PubMed]
  30. M. A. Porras, "Diffraction-free and dispersion-free pulsed beam propagation in dispersive media," Opt. Lett. 26, 1364-1366 (2001). [CrossRef]
  31. W. Hu and H. Guo, "Ultrashort pulsed Bessel beams and spatially induuced group-velovcity dispersion," J. Opt. Soc. Am. A 19, 49-53 (2002). [CrossRef]
  32. A. T. Friberg, J. Fagerholm, and M. M. Salomaa, "Space-frequency analysis of nondiffracting pulses," Opt. Commun. 136, 207-212 (1997). [CrossRef]
  33. E. Recami, "On localized ‘X-shaped’ superluminal solutions to Maxwell’s equations," Physica A 252, 586-601 (1999). [CrossRef]
  34. C. H. Gan, G. Gbur, and T. D. Visser, "Surface plasmons modulate the spatial coherence of light in Young’s interference experiment," Phys. Rev. Lett. 98, 043908 (2007). [CrossRef] [PubMed]
  35. International Commission on Illumination, Colorimetry, Publ. CIE No 15.2 (Commission Internationale d’Eclairage, Vienna, 1986).
  36. E. Wolf, "Youngs interference fringes with narrow-band light," Opt. Lett. 8, 250-252 (1983). [CrossRef] [PubMed]
  37. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, "Spectral coherence properties of temporally modulated stationary light sources," Opt. Express 11, 1894-1899 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-16-1894. [CrossRef] [PubMed]
  38. P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, "Partially coherent Gaussian pulses," Opt. Commun. 204, 53-58 (2002). [CrossRef]
  39. P. Vahimaa and J. Turunen, "Independent-elementary-pulse representation for non-stationary fields," Opt. Express 14, 5007-5012 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5007. [CrossRef] [PubMed]
  40. A. T. Friberg, H. Lajunen, and V. Torres-Company, "Spectral elementary-coherence-function representation for partially coherent light pulses," Opt. Express 15, 5160-5165 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5160. [CrossRef] [PubMed]
  41. H. Lajunen, P. Vahimaa, and J. Tervo, "Theory of spatially and spectrally partially coherent pulses," J. Opt. Soc. Am. A 22, 1536-1545 (2005) [CrossRef]
  42. K. Reivelt and P. Saari, "Bessel-Gauss pulse as an appropriate mathematical model for optically realizable localized waves," Opt. Lett. 29, 1176-1178 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited