OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20295–20305

Near-field imaging of optical antenna modes in the mid-infrared

Robert L. Olmon, Peter M. Krenz, Andrew C. Jones, Glenn D. Boreman, and Markus B. Raschke  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 20295-20305 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical antennas can enhance the coupling between free-space propagating light and the localized excitation of nanoscopic light emitters or receivers, thus forming the basis of many nanophotonic applications. Their functionality relies on an understanding of the relationship between the geometric parameters and the resulting near-field antenna modes. Using scattering-type scanning near-field optical microscopy (s-SNOM) with interferometric homodyne detection, we investigate the resonances of linear Au wire antennas designed for the mid-IR by probing specific vector near-field components. A simple effective wavelength scaling is observed for single wires with λeff=λ/(2.0± 0.2), specific to the geometric and material parameters used. The disruption of the coherent current oscillation by introducing a gap gives rise to an effective multipolar mode for the two near-field coupled segments. Using antenna theory and numerical electrodynamics simulations two distinct coupling regimes are considered that scale with gap width or reactive near-field decay length, respectively. The results emphasize the distinct antenna behavior at optical frequencies compared to impedance matched radio frequency (RF) antennas and provide experimental confirmation of theoretically predicted scaling laws at optical frequencies.

© 2008 Optical Society of America

OCIS Codes
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Physical Optics

Original Manuscript: September 24, 2008
Revised Manuscript: November 10, 2008
Manuscript Accepted: November 11, 2008
Published: November 24, 2008

Robert L. Olmon, Peter M. Krenz, Andrew C. Jones, Glenn D. Boreman, and Markus B. Raschke, "Near-field imaging of optical antenna modes in the mid-infrared," Opt. Express 16, 20295-20305 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008). [CrossRef]
  2. V. Giannini and J. A. Sánchez-Gil, "Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas," Opt. Lett. 33, 899-901 (2008). [CrossRef] [PubMed]
  3. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007). [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402-4 (2006). [CrossRef] [PubMed]
  5. J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005). [CrossRef]
  6. P. Krenz, J. Alda, and G. Boreman, "Orthogonal infrared dipole antenna," Infrared Phys. Technol. 51, 340-343 (2008). [CrossRef]
  7. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000). [CrossRef]
  8. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007). [CrossRef]
  9. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006). [CrossRef] [PubMed]
  10. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008). [CrossRef]
  11. M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 136-159 (2008). [CrossRef]
  12. J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402-4 (2005). [CrossRef] [PubMed]
  13. S.-D. Liu, M.-T. Cheng, Z.-J. Yang, and Q.-Q. Wang, "Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter," Opt. Lett. 33, 851-853 (2008). [CrossRef] [PubMed]
  14. In some applications, a low-frequency feed line may be used to extract an electrical signal from an optical antenna, see, e.g., F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46, 418-428 (2005). [CrossRef]
  15. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  16. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006). [CrossRef]
  17. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008). [CrossRef]
  18. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  19. P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005). [CrossRef] [PubMed]
  20. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007). [CrossRef] [PubMed]
  21. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005). [CrossRef] [PubMed]
  22. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano. Lett. 8, 631-636 (2008). [CrossRef] [PubMed]
  23. H. Fischer and O. J. F. Martin, "Engineering the optical response ofplasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008). [CrossRef] [PubMed]
  24. B. P. Joshi and Q.-H. Wei, "Cavity resonances of metal-dielectric-metal nanoantennas," Opt. Express 16, 10315-10322 (2008). [CrossRef] [PubMed]
  25. E. R. Encina and E. A. Coronado, "Resonance conditions for multipole plasmon excitations in noble metal nanorods," J. Phys. Chem. C 111, 16796-16801 (2007). [CrossRef]
  26. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philos. Trans. R. Soc. London Ser. A 362, 787-805 (2004). [CrossRef]
  27. K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007). [CrossRef]
  28. M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008). [CrossRef] [PubMed]
  29. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005). [CrossRef]
  30. Since the detected signal is a demodulation of the tip-sample dither frequency, it actually represents the near-field gradient within the dither region rather than just the near-field intensity.
  31. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, "Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches," J. Opt. Soc. Am. B 23, 823-833 (2006). [CrossRef]
  32. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003). [CrossRef] [PubMed]
  33. In addition, a backscattered far-field background leads to a self-homodyne signal amplification with in general unspecified phase [34]. For weak sample scattering (this work) or strongly resonant (e.g., plasmonic) excitation [28], spatial phase variations of this background can be neglected resulting in a mere constant s-SNOM signal offset at constant phase.
  34. M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003). [CrossRef]
  35. For details on phase-resolved imaging of IR active nanostructures, see A. Jones, R. Olmon, S. Skrabalak, Y. Xia, and M. Raschke (in preparation).
  36. C. Balanis, Antenna Theory: Analysis and Design. John Wiley & Sons, Inc., second edition, 1997.
  37. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. John Wiley & Sons, Inc., second edition, 1981.
  38. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003). [CrossRef]
  39. S. J. Orfanidis, Electromagnetic Waves and Antennas. Online book, retrieved August 2008. http://www. ece.rutgers.edu/~{}orfanidi/ewa/.
  40. G. V. Borgiotti, "A novel expression for the mutual admittance of planar radiating elements," IEEE Trans. Antennas Propag. AP-16, 329 (1968). [CrossRef]
  41. T. Søndergaard and S. I. Bozhevolnyi, "Strip and gap plasmon polariton optical resonators," Phys. Status Solidi B 245, 9-19 (2008). [CrossRef]
  42. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406-4 (2006). [CrossRef]
  43. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003). [CrossRef] [PubMed]
  44. R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001). [CrossRef]
  45. R. Ossikovski, Q. Nguyen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced raman spectroscopy," Phys. Rev. B 75, 045412 (2007). [CrossRef]
  46. R. Hillenbrand, private communication, July 2008.
  47. A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2, 307-310 (2008). [CrossRef]
  48. M. Sukharev and T. Seideman, "Phase and polarization control as a route to plasmonic nanodevices," Nano. Lett. 6, 715-719 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited