OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20409–20417

Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate

W. Jin, K. S. Chiang, and Q. Liu  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20409-20417 (2008)
http://dx.doi.org/10.1364/OE.16.020409


View Full Text Article

Enhanced HTML    Acrobat PDF (870 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report electro-optic (EO) long-period waveguide gratings (LPWGs) fabricated in a special lithium-niobate (LiNbO3) waveguide structure. The waveguide consists of a clad core formed with a two-step proton-exchange process and a thin cover layer created by an additional reverse proton-exchange process for the restoration of the EO strength of the waveguide. Using several LPWG samples, we demonstrate experimentally the effects of using different cladding modes and waveguide parameters on the grating performance. One of our 10-mm long samples shows a 27-dB rejection band at a driving voltage of 95 V with a center wavelength tunable thermally at a sensitivity of -0.4 nm/°C. Our analysis of the theoretical limit of the efficiency of such an EO grating suggests room for significant further improvement by optimizing the waveguide and electrode designs. The LiNbO3 LPWG provides an EO control of the grating strength and a thermo-optic control of the operating wavelength and thus opens up many new opportunities for high-speed applications, such as dynamic optical filtering and optical intensity modulation.

© 2008 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3730) Integrated optics : Lithium niobate
(230.2090) Optical devices : Electro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: August 11, 2008
Revised Manuscript: November 14, 2008
Manuscript Accepted: November 16, 2008
Published: November 25, 2008

Citation
W. Jin, K. S. Chiang, and Q. Liu, "Electro-optic long-period waveguide gratings in lithium niobate," Opt. Express 16, 20409-20417 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20409


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002). [CrossRef] [PubMed]
  2. K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006). [CrossRef]
  3. Y. M. Chu, K. S. Chiang, and Q. Liu, "Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings," Appl. Opt. 45, 2755-2760 (2006). [CrossRef] [PubMed]
  4. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644. [CrossRef] [PubMed]
  5. M. Kulishov, X. Daxhelet, M. Gaidi, and M. Chaker, "Transmission spectrum reconfiguration in long-period gratings electrically induced in Pockels-type media with the help of a periodical electrode structure," J. Lightwave Technol. 22, 923-933 (2004). [CrossRef]
  6. W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008). [CrossRef]
  7. W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Electro-Optic Long-Period Grating on Lithium-Niobate Waveguide," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Washington, DC, 2008), Paper JWA33. [PubMed]
  8. L. Arizmendi, "Photonic applications of lithium niobate crystals," Physica Status Solidi A 201, 253-283 (2004). [CrossRef]
  9. A. Mendez, G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Comparison of the electro-optic coefficient r(33) in well-defined phases of proton exchanged LiNbO3 waveguides," Appl. Phys. B 73, 485-488 (2001). [CrossRef]
  10. J. L. Jackel and J. J. Johnson, "Reverse Exchange Method for Burying Proton Exchanged Wave-Guides," Electron. Lett. 27, 1360-1361 (1991). [CrossRef]
  11. G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Electro-optic behaviour of reverse proton exchanged LiNbO3 waveguides," Physica Status Solidi A 193, R7-R9 (2002). [CrossRef]
  12. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000). [CrossRef]
  13. K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985). [CrossRef]
  14. K. S. Chiang and S. Y. Cheng, K. S. Chiang, and S. Y. Cheng, "A technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides", Opt. Eng. 47, 034601(1-4) (2008). [CrossRef]
  15. W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, "Loss characteristics of potassium and silver double-ion-exchanged glass waveguides," J. Appl. Phys. 74, 1529-1533 (1993). [CrossRef]
  16. A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004). [CrossRef]
  17. M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings", Opt. Commun. 208, 321-327 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited