OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20418–20426

Partially correlated azimuthal vortex illumination: Coherence and correlation measurements and effects in imaging

Dean P. Brown and Thomas G. Brown  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20418-20426 (2008)
http://dx.doi.org/10.1364/OE.16.020418


View Full Text Article

Enhanced HTML    Acrobat PDF (423 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Correlations in the illumination field have a profound impact on the image contrast for features near the resolution limit. The pupil polarization affects these correlations. We show that a polarization vortex has a particularly dramatic effect. A theoretical model is given for the correlation matrix of a partially correlated source created by placing an azimuthal polarization vortex mode converter in the pupil plane of a critical illumination system. We then validate this model experimentally using a reversed-wavefront Young interferometer, directly show the impact that the phase of the correlation function has on image contrast.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(110.4980) Imaging systems : Partial coherence in imaging
(260.5430) Physical optics : Polarization
(080.4865) Geometric optics : Optical vortices

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: September 3, 2008
Revised Manuscript: October 6, 2008
Manuscript Accepted: October 20, 2008
Published: November 25, 2008

Citation
Dean P. Brown and Thomas G. Brown, "Partially correlated azimuthal vortex illumination: Coherence and correlation measurements and effects in imaging," Opt. Express 16, 20418-20426 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20418


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Jordan and D. G. Hall, "Free-space azimuthal paraxial wave equation: The azimuthal Bessel-Gauss beam solution," Opt. Lett. 19, 427-429 (1994). [CrossRef] [PubMed]
  2. D. G. Hall, "Vector-beam solutions of Maxwell’s wave equation," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  3. P. L. Greene and D. G. Hall, "Properties and diffraction of vector Bessel-Gauss beams," J. Opt. Soc. Am. A 15, 3020-3027 (1998). [CrossRef]
  4. P. L. Greene and D. G. Hall, "Focal shift in vector beams," Opt. Express 4, 411-419 (1999). [CrossRef] [PubMed]
  5. C. J. R. Sheppard and S. Saghafi, "Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation," Opt. Lett. 24, 1543-1545 (1999). [CrossRef]
  6. K. S. Youngworth, "Inhomogeneous polarization in confocal microscopy," Ph.D. thesis, University of Rochester, Rochester, NY 14627 (2002).
  7. D. P. Biss and T. G. Brown, "Polarization-vortex-driven second-harmonic generation," Opt. Lett. 28, 923-925 (2003). [CrossRef] [PubMed]
  8. D. P. Biss, "Focal field interactions from cylindrical vector beams," Ph.D. thesis, University of Rochester, Rochester, NY 14627 (2005).
  9. S. Quabis, R. Dorn, and G. Leuchs, "Generation of a radially polarized doughnut mode of high quality," Appl. Phys. B 81, 597-600 (2005).
  10. A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Opt. 26, 61-66 (2007). [CrossRef]
  11. Q1. H. H. Hopkins, "The concept of partial coherence in optics," Proc. Roy. Soc. A 208, 263-277 (1951). [CrossRef]
  12. Q2. H. H. Hopkins, "On the diffraction theory of optical images," Proc. Roy. Soc. A 217, 408-432 (1953). [CrossRef]
  13. H. H. Hopkins, "Image formation with coherent and partially coherent light," Photograph. Sci. Eng. 21 (1977).
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).
  15. E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A 312, 263 (2003). [CrossRef]
  16. J. Tervo, T. Set¨al¨a, and A. T. Friberg, "Theory of partially coherent electromagnetic fields in the space-frequency domain," J. Opt. Soc. Am. A 21, 2205-2215 (2004). [CrossRef]
  17. T. Saastamoinen, J. T. J. Turunen, T. Set¨al¨a, and A. T. Friberg, "Electromagnetic coherence theory of laser resonator modes," J. Opt. Soc. Am. A 22, 103-108 (2005). [CrossRef]
  18. E. Wolf, "Coherence and polarization properties of electromagnetic laser modes," Opt. Commun. 265, 60-62 (2006). [CrossRef]
  19. W. Wang and M. Takeda, "Linear and angular coherence momenta in the classical second-order coherence theory of vector electromagnetic fields," Opt. Lett. 31, 2520-2522 (2006). [CrossRef] [PubMed]
  20. E. Wolf, "The influence of Young’s interference experiment on the development of statistical optics," Progress in Optics, E.Wolf, ed., (Elsevier Science, 2007) Vol. 50, Chap. 7. [CrossRef]
  21. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, New York, 2007).
  22. F. Zernike, "The concept of degree of coherence and its application to optical problems," Physica 5, 785-795 (1938). [CrossRef]
  23. D. P. Brown, A. K. Spilman, T. G. Brown, M. A. Alonso, R. Borghi, and M. Santarsiero, "Calibration of a reversed-wavefront interferometer for polarization coherence metrology," Proc. SPIE 6672667207(2007).
  24. D. P. Brown, A. K. Spilman, T. G. Brown, R. Borghi, S. N. Volkov, and E. Wolf, "Spatial coherence properties of azimuthally polarized laser modes," Opt. Commun. 281, 5287-5290 (2008). [CrossRef]
  25. G. Gbur, T. D. Visser, and E. Wolf, "‘Hidden’ singularities in partially coherent wavefields," J. Opt. A: Pure and Appl. Opt. 6, S239-S242 (2004). [CrossRef]
  26. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, Jr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92, 143,905 (2004). [CrossRef]
  27. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, Jr., "Spatial correlation vortices in partially coherent light: theory," J. Opt. Soc. Am. B 21, 1895-1900 (2004). [CrossRef]
  28. I. D. Maleev and G. A. Swartzlander, Jr., "Propagation of spatial correlation vortices," J. Opt. Soc. Am. B 25, 915-922 (2008). [CrossRef]
  29. G. Gbur and G. A. Swartzlander, Jr., "Complete transverse representation of a correlation singularity of a partially coherent field," J. Opt. Soc. Am. B 25, 1422-1429 (2008). [CrossRef]
  30. R. Borghi and M. Santarsiero, "Nonparaxial propagation of spirally polarized optical beams," J. Opt. Soc. Am. A 21, 2029-2037 (2004). [CrossRef]
  31. M. Santarsiero and R. Borghi, "Measuring spatial coherence by using a reversed-wavefront Young interferometer," Opt. Lett. 31, 861-863 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited