OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20477–20483

Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination

Alexander Neumann, Yuliya Kuznetsova, and S. R. J. Brueck  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20477-20483 (2008)
http://dx.doi.org/10.1364/OE.16.020477


View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Evanescent-wave illumination is applied to synthetic-aperture microscopy on a transparent solid substrate to extend the resolution limit to λ/2(n+1) (where n is the substrate refractive index) independent of the lens NA. Using a 633 nm source and a 0.4 NA lens, a resolution to 150 nm (λ/4.2) is demonstrated on a glass (n=1.5) substrate. Further extension to ~74-nm resolution (λ/8.6) is projected with a higher index substrate (n=3.3).

© 2008 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Imaging Systems

History
Original Manuscript: September 29, 2008
Revised Manuscript: November 11, 2008
Manuscript Accepted: November 14, 2008
Published: November 25, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Alexander Neumann, Yuliya Kuznetsova, and S. R. J. Brueck, "Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination," Opt. Express 16, 20477-20483 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20477


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbé, "Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413-468 (1873). [CrossRef]
  2. W. Lucosz, "Optical Systems with Resolving Powers Exceeding the Classical Limit," J. Opt. Soc. Am. 57, 932-941 (1967). [CrossRef]
  3. H. Nassenstein, "Superresolution by diffraction of subwaves", Opt. Commun. 2, 231-234 (1970). [CrossRef]
  4. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003). [CrossRef] [PubMed]
  5. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007). [CrossRef] [PubMed]
  6. S. A. Alexandrov T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006). [CrossRef] [PubMed]
  7. V. Mico, Z. Zalevsky, and J. Garcia, "Superresolution optical system by common-path interferometry," Opt. Exp. 14, 5168-5177 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5168. [CrossRef]
  8. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy," J. Opt. Soc. Am. A 25, 811-822 (2008). [CrossRef]
  9. A. Neumann, Y. Kusnetsova, and S. R. J. Brueck, "Structured Illumination for the Extension of Imaging Interferometric Lithography," Opt. Express 16, 6785-6793 (2008). [CrossRef] [PubMed]
  10. D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic,  2, 764-774 (2001).
  11. G. E. Cragg and P. T. C. So, "Lateral resolution enhancement with standing evanescent waves," Opt. Lett. 25, 46-48 (2000). [CrossRef]
  12. S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007). [CrossRef] [PubMed]
  13. A. Vainrub, O. Pustovyy, and V. Vodyanoy, "Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser," Opt. Lett. 31, 2855-2857 (2006). [CrossRef] [PubMed]
  14. Q. Wu, L. P. Ghislan, and V. B. Elings, "Imaging with Solid Immersion Lenses, Spatial Resolution, and Applications," Proc. IEEE 88, 1491-1498 (2000). [CrossRef]
  15. J. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  16. V. Podolskiy and E. E. Narimanov, "Near-Sighted Superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  17. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007). [CrossRef] [PubMed]
  18. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development Of Optical Hyperlens for Imaging Below the Diffraction Limit," Opt. Express 15, 15886-15891 (2007). [CrossRef] [PubMed]
  19. I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  20. D. F. Nelson and E. H. Turner, "Electro-optic and Piezoelectric Coefficients and Refractive Index of Gallium Phosphide," J. Appl. Phys. 39, 3337-3343 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited