OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20522–20529

Structure of confined fluids by x-ray interferometry using diffraction gratings

K. Nygård, D. K. Satapathy, O. Bunk, A. Diaz, E. Perret, J. Buitenhuis, F. Pfeiffer, C. David, and J. F. van der Veen  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 20522-20529 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a novel method for structure determination of confined fluids using diffraction-grating-based x-ray interferometry. Within this approach, diffraction from a microfluidic array, which acts both as confinement and transmission diffraction grating, provides the reference wave, whereas the density modulations of the confined fluid, acting as a weak phase object, generate the object wave. The ensemble-averaged density profile of the fluid perpendicular to the confining channel is then unambiguously obtained from the interference between the reference and object waves by direct Fourier inversion.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(100.5070) Image processing : Phase retrieval
(340.7450) X-ray optics : X-ray interferometry

ToC Category:
Diffraction and Gratings

Original Manuscript: September 15, 2008
Revised Manuscript: October 28, 2008
Manuscript Accepted: November 24, 2008
Published: November 26, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

K. Nygard, D. K. Satapathy, O. Bunk, A. Diaz, E. Perret, J. Buitenhuis, F. Pfeiffer, C. David, and F. van der Veen, "Structure of confined fluids by x-ray interferometry using diffraction gratings," Opt. Express 16, 20522-20529 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. J. Huisman, J. F. Peters, M. J. Zwanenburg, S. A. de Vries, T. E. Terry, D. Abernathy, and J. F. van der Veen, "Layering of a liquid metal in contact with a hard wall," Nature (London) 390, 379-381 (1997). [CrossRef]
  2. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann, and G. Reiter, "Observation of five-fold local symmetry in liquid lead," Nature (London) 408, 839-841 (2000). [CrossRef] [PubMed]
  3. B. Bhushan, J. N. Israelachvili, and U. Landmann, "Nanotribology: friction, wear and lubrication at the atomic scale," Nature (London) 374, 607-616 (1995). [CrossRef]
  4. M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. O. Riese, and J. F. van der Veen, "X-ray waveguiding studies of ordering phenomena in confined fluids," Phys. Rev. Lett. 85, 5154-5157 (2000). [CrossRef] [PubMed]
  5. O. H. Seeck, H. Kim, D. R. Lee, D. Shu, I. D. Kaendler, J. K. Basu, and S. K. Sinha, "Observation of thickness quantization in liquid films confined to molecular dimension," Europhys. Lett. 60, 376-382 (2002). [CrossRef]
  6. A. Diaz, C. David, H. Guo, H. Keymeulen, F. Pfeiffer, G. Wegdam, T. Weitkamp, and J. F. van der Veen, "Microcavity arrays for X-ray diffraction studies of ordering phenomena in confined colloid solutions," Physica B 357, 199-203 (2005). [CrossRef]
  7. A. Diaz and J. F. van der Veen, "Theory of X-ray scattering from a complex fluid confined by a nanocavity array," Thin Solid Films 515, 5645-5653 (2007). [CrossRef]
  8. O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D. K. Satapathy, and J. F. van der Veen, "Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels," Acta Crystallogr. Sect. A 63, 306-314 (2007). [CrossRef]
  9. O. Bunk, A. Diaz, F. Pfeiffer, C. David, C. Padeste, H. Keymeulen, P. R. Willmott, B. D. Patterson, B. Schmitt, D. K. Satapathy, J. F. van der Veen, H. Guo, and G. H. Wegdam, "Confinement-induced liquid ordering investigated by x-ray phase retrieval," Phys. Rev. E 75, 021501 (2007). [CrossRef]
  10. H. N. Chapman, A. Barty, S. Marchesini, A. Moy, S. P. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, "High-resolution ab initio three-dimensional x-ray diffraction microscopy," J. Opt. Soc. Am. A 23, 1179-1200 (2006). [CrossRef]
  11. J. N. Clark, G. J. Williams, H. M. Quiney, L. Whitehead, M. D. de Jonge, E. Hanssen, M. Altissimo, K. A. Nugent, and A. G. Peele, "Quantitative phase measurement in coherent diffractive imaging," Opt. Express 16, 3342-3348 (2008). [CrossRef] [PubMed]
  12. P. W. Wachulak, M. C. Marconi, R. A. Bartels, C. S. Menoni, and J. J. Rocca, "Soft x-ray laser holography with wavelength resolution," J. Opt. Soc. Am. B 25, 1811-1814 (2008). [CrossRef]
  13. A. Szöke, "Holographic methods in x-ray crystallography. II. Detailed theory and connection to other methods of crystallography," Acta Crystallogr. Sect. A 49, 853-866 (1993). [CrossRef]
  14. G. J. Maalouf, J. C. Hoch, A. S. Stern, H. Szöke, and A. Szöke, "Holographic methods in x-ray crystallography. III. First numerical results," Acta Crystallogr. Sect. A 49, 866-871 (1993). [CrossRef]
  15. D. K. Saldin, R. Harder, H. Vogler, W. Moritz, and I. K. Robinson, "Solving the structure completion problem in surface crystallography," Comput. Phys. Commun. 137, 12-24 (2001). [CrossRef]
  16. Since Δβ/Δδ ~ 10-2 in the present study (Δδ denoting the average change in the imaginary part of the refractive index across the grating-fluid interface), absorption can be neglected.
  17. It follows from the definition of (x) that A0 = 0.
  18. The reference diffraction efficiencies |0 m are obtained from the diffraction efficiencies |e m of the empty grating as |0 m _ (m_=0 |m/m_=0 |e m) |e m.
  19. K. Nygård, D. K. Satapathy, O. Bunk, F. Pfeiffer, C. David, and J. F. van der Veen, "Dynamical theory for diffractive x-ray imaging of one-dimensional periodic objects," Appl. Phys. Lett. 92, 214105 (2008). [CrossRef]
  20. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, "Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens," Nature (London) 400, 342-344 (1999). [CrossRef]
  21. T. Terwilliger, S.-H. Kim, and D. Eisenberg, "Generalized method of determining heavy-atom positions using the difference Patterson function," Acta Crystallogr. Sect. A 43, 1-5 (1987). [CrossRef]
  22. D. K. Satapathy, O. Bunk, K. Jefimovs, K. Nygård, H. Guo, A. Diaz, E. Perret, F. Pfeiffer, C. David, G. H. Wegdam, and J. F. van der Veen, "Colloidal monolayer trapped near a charged wall: A synchrotron x-ray diffraction study," Phys. Rev. Lett. 101, 136103 (2008). [CrossRef] [PubMed]
  23. C. Gutt, T. Ghaderi, V. Chamard, A. Madsen, T. Seydel, M. Tolan, M. Sprung, G. Grübel, and S. K. Sinha, "Observation of heterodyne mixing in surface x-ray photon correlation spectroscopy experiments," Phys. Rev. Lett. 91, 076104 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited