OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20577–20587

In-vivo fluorescence imaging of mammalian organs using charge-assembled mesocapsule constructs containing indocyanine green

Mohammad A. Yaseen, Jie Yu, Michael S. Wong, and Bahman Anvari  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20577-20587 (2008)
http://dx.doi.org/10.1364/OE.16.020577


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Indocyanine green (ICG) is a fluorescent probe used in clinical imaging. However, its utility remains limited by optical instability, rapid circulation kinetics, and exclusive uptake by the liver. Using mesocapsule (MC) constructs to encapsulate ICG, we have developed a technology to stabilize ICG’s optical properties and alter its biodistribution. We present in vivo fluorescence images of mammalian organs to demonstrate the potential application of our ICG encapsulation technology for optical imaging of specific tissues.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 14, 2008
Revised Manuscript: November 20, 2008
Manuscript Accepted: November 25, 2008
Published: November 26, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Mohammad A. Yaseen, Jie Yu, Michael S. Wong, and Bahman Anvari, "In-vivo fluorescence imaging of mammalian organs using charge-assembled mesocapsule constructs containing indocyanine green," Opt. Express 16, 20577-20587 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20577


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, "Fluorescence molecular imaging," Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
  2. N. Beckmann, R. Kneuer, H.-U. Gremlich, H. Karmouty-Quintana, F.-X. Blé, and M. Müller, "In Vivo mouse imaging and spectroscopy in drug discovery," NMR Biomed. 20, 154-185 (2007). [CrossRef] [PubMed]
  3. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, "Light-absorbing properties, stability, and spectral stabilization of indocyanine green," J. Appl. Physiol. 40, 575-583 (1976). [PubMed]
  4. S. A. Prahl, "Optical Absorption Properties of Indocyanine Green (ICG)," http://omlc.ogi.edu/spectra/icg/index.html, 2008.
  5. J. G. Webster, "Measurement of Flow and Volume of Blood," in Medical Instrumentation: Application and Design, G. Webster, ed. (John Wiley & Sons, Inc, New York, 1998).
  6. T. Desmettre, J. M. Devoiselle, and S. Mordon, "Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography," Surv. Ophthalmol. 45, 15-27 (2000). [CrossRef] [PubMed]
  7. W. Holzer, M. Mauerer, A. Penzkofer, R. M. Szeimies, C. Abels, M. Landthaler, and W. Bäumler, "Photostability and thermal stability of indocyanine green," J. Photochem. Photobiol. B 47, 155-164 (1998). [CrossRef]
  8. I. Roberts, P. Fallon, F. J. Kirkham, A. Lloyd-Thomas, C. Cooper, M. Eliot, and A. D. Edwards, "Estimation of cerbral blood flow with near infrared spectroscopy and indocyanine green," Lancet 342, 1425-1425 (1993). [CrossRef] [PubMed]
  9. M. M. Haglund, D. W. Hochman, A. M. Spence, and M. S. Berger, "Enhanced optical imaging of rat gliomas and tumor margins," Neurosurgery 35, 930-940 (1994). [CrossRef] [PubMed]
  10. A. Raabe, J. Beck, R. Gerlach, M. Zimmermann, and V. Seifert, "Near-infrared indocyanine video angiography: a new method for intraoperative assessment of vascular flow," J. Neurosurg. 87, 738-745 (2003).
  11. T. Fischer, I. Gemeinhardt, S. Wagner, D. V. Stieglitz, J. Schnorr, K.-G. A. Hermann, B. Ebert, D. Petzelt, R. MacDonald, K. Licha, M. Schirner, V. Krenn, T. Kamradt, and M. Taupitz, "Assessment of Unspecific Near-Infrared Dyes in Laser-Induced Fluorescence Imaging of Experimental Arthritis," Acad. Radiol. 13, 4-13 (2006). [CrossRef] [PubMed]
  12. A. N. Pande, R. N. Kohler, E. Aikawa, R. Weissleider, and F. A. Jaffer, "Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy," J. Biomed. Opt. 11, 021009 (2006). [CrossRef] [PubMed]
  13. E. Tanaka, H. S. Choi, H. Fujii, M. G. Bawendi, and J. V. Frangioni, "Image-guided oncologic surgery using invisible light: Completed pre-clinical development for sentinel lymph node mapping," Ann. Surg. Oncol. 13, 1671-1681 (2006). [CrossRef] [PubMed]
  14. F. Ogata, R. Azuma, M. Kikuchi, I. Koshima, and Y. Morimoto, "Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling," Ann. Plast. Surg. 58, 652-655 (2007). [CrossRef] [PubMed]
  15. J. V. Frangioni, "In vivo near-infrared fluorescence imaging," Curr. Opin. Chem. Biol. 7, 626-634 (2003). [CrossRef] [PubMed]
  16. S. Mordon, T. Desmettre, J.-M. Devoiselle, and V. Mitchell, "Selective Laser Photocoagulation of Blood Vessels in a Hamster Skin Flap Model Using a Specific ICG Formulation," Lasers Surg. Med. 21, 365-373 (1997). [CrossRef] [PubMed]
  17. V. Saxena, M. Sadoqi, and J. Shao, "Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release," Int. J. Pharm. 278, 293-301 (2004). [CrossRef] [PubMed]
  18. G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, "Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging," J. Biomed. Opt. 12, 044020 (2007). [CrossRef] [PubMed]
  19. V. B. Rodriguez, S. M. Henry, A. S. Hoffman, P. S. Stayton, X. Li, and S. H. Pun, "Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging," J. Biomed. Opt. 13, 014025 (2008). [CrossRef] [PubMed]
  20. A. J. Gomes, L. O. Lunardi, J. M. Marchetti, C. N. Lunardi, and A. C. Tedesco, "Indocyanine Green Nanoparticles Useful for Photomedicine," Photomed. Laser Surg. 34, 514-521 (2006). [CrossRef]
  21. V. Saxena, M. Sadoqi, and J. Shao, "Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems," J. Photochem. Photobiol. B 74, 29-38 (2004). [CrossRef] [PubMed]
  22. V. Saxena, M. Sadoqi, and J. Shao, "Polymeric nanoparticulate delivery system for Indocyanine green: Biodistribution in healthy mice," Int. J. Pharm. 308, 200-204 (2006). [CrossRef] [PubMed]
  23. J. Yu, M. A. Yaseen, B. Anvari, and M. S. Wong, "Synthesis of Near-Infrared-Absorbing Nanoparticle-Assembled Capsules," Chem. Mater. 19, 1277-1284 (2007). [CrossRef]
  24. R. K. Rana, V. S. Murthy, J. Yu, and M. S. Wong, "Nanoparticle Self-Assembly of Heirarchically Ordered Microcapsule Structures," Adv. Mater. 17, 1145-1150 (2005). [CrossRef]
  25. M. A. Yaseen, J. Yu, M. S. Wong, and B. Anvari, "Tissue Distribution of Encapsulated Indocyanine Green in Healthy Mice," submitted toAnn. Biomed. Eng. [PubMed]
  26. M. A. Yaseen, J. Yu, M. S. Wong, and B. Anvari, "Stability assessment of indocyanine green within dextran-coated mesocapsules by absorbance spectroscopy," J. Biomed. Opt. 12, 064031 (2007). [CrossRef]
  27. M. A. Yaseen, J. Yu, M. S. Wong, and B. Anvari, "Laser-Induced Heating of Dextran-Coated Mesocapsules Containing Indocyanine Green," Biotechnol. Prog. 23, 1431-1440 (2007). [CrossRef] [PubMed]
  28. J. P. Houston, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, "Quality analysis of in vivo near-infrared fluorescence and conventional gamma images acquired using a dual labeled tumor targeting probe," J. Biomed. Opt. 10, 054010 (2005). [CrossRef] [PubMed]
  29. R. E. Coleman, C. M. Laymon, and T. G. Turkington, "FDG Imaging of Lung Nodules: A Phantom Study Comparing Spect, Camera-based PET, and Dedicated PET," Radiology 210, 823 -838 (1999). [PubMed]
  30. H. Palmedo, H. Bender, F. Grünwald, P. Mallman, P. Zamora, D. Krebs, and H. J. Biersack, "Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and technetium-99m methoxyisobutylisonitrile scintimammography in the detection of breast tumors," Eur. J. Nucl. Med. 24, 1138-1145 (1997). [PubMed]
  31. W. T. Phillips, "Delivery of gamma-imaging agents by liposomes," Adv. Drug. Delivery Rev. 37, 13-32 (1999). [CrossRef]
  32. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, "Biodegradable Long-Circulating Polymeric Nanospheres," Science 263, 1600-1603 (1994). [CrossRef] [PubMed]
  33. D. E. OwensIII and N. A. Peppas, "Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles," Int J. Pharm. 307, 93-102 (2006). [CrossRef]
  34. S.-D. Li and L. Huang, "Pharmacokinetics and Biodistribution of Nanoparticles," Mol. Pharm. 5, 496-504 (2008). [CrossRef] [PubMed]
  35. F. Alexis, E. Pridgen, L. K. Molnar, and O. C. Farokhzad, "Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles," Mol. Pharm. 5, 505-515 (2008). [CrossRef] [PubMed]
  36. J.-C. Leroux, F. De Jaeghere, B. Anner, E. Doelker, and R. Gurny, "An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(D,L-lactic acid) nanoparticles by human monocytes," Life Sci. 57, 695-703 (1995). [CrossRef] [PubMed]
  37. M. T. Peracchia, S. Harnisch, H. Pinto-Alphandary, A. Gulik, J. C. Dedieu, D. Desmaële, J. d'Angelo, R. H. Müller, and P. Couvreur, "Visualization of in vitro protein-rejecting properties of PEGylated stealth ® polycyanoacrylate nanoparticles," Biomaterials 20, 1269-1275 (1999). [CrossRef] [PubMed]
  38. S. M. Moghimi and J. Szebeni, "Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties," Prog. Lipid Res. 42, 463-478 (2003). [CrossRef] [PubMed]
  39. R. Gref, A. Domb, P. Quellec, T. Blunk, R. H. Muller, J. M. Verbavatz, and R. Langer, "The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres," Adv. Drug. Delivery Rev. 16, 215-233 (1995). [CrossRef]
  40. S. C. Semple, A. Chonn, and P. R. Cullis, "Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo," Adv. Drug Delivery Rev. 32, 3-17 (1998). [CrossRef]
  41. R. Gref, M. Lück, P. Quellec, M. Marchland, E. Dellacherie, S. Harnisch, T. Blunk, and R. H. Müller, "'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption," Colloids Surf. B Biointerfaces 18, 301-313 (2000). [CrossRef] [PubMed]
  42. V. P. Torchilin and V. S. Trubetskoy, "Which polymers can make nanoparticulate drug carriers long-circulating?," Adv. Drug Delivery Rev. 16, 141-155 (1995). [CrossRef]
  43. I. Brigger, C. Dubernet, and P. Couvreur, "Nanoparticles in cancer therapy and diagnosis," Adv. Drug Delivery Rev. 54, 631-651 (2002). [CrossRef]
  44. G. Storm, S. O. Belliot, T. Daemen, and D. D. Lasic, "Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system," Adv. Drug Delivery Rev. 17, 31-48 (1995). [CrossRef]
  45. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, "Nanoprobes with near-infrared persistent luminescence for in vivo imaging," Proc. Natl. Acad. Sci. U. S. A. 104, 9266-9271 (2007). [CrossRef] [PubMed]
  46. O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J. Olson, and M. Zhang, "Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas," Nano Lett. 5, 1003-1008 (2005). [CrossRef]
  47. L. Levy, Y. Sahoo, K. S. Kim, E. J. Bergey, and P. N. Prasad, "Nanochemistry: Synthesis and Characterization of Multifunctional Nanoclinics for Biological Applications," Chem. Mater. 14, 3715-3721 (2002). [CrossRef]
  48. J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M. H. Cho, and T. Hyeon, "Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy," Angew. Chem. Int. Ed. Engl. 45, 7754-7758 (2006). [CrossRef] [PubMed]
  49. A. N. Mathur, and P. N. Mathur, "Lasers in Interventional Pulmonology," in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, 2003), pp. 41-41 - 41-17.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (381 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited