OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20637–20647

Time-domain approach for designing dispersive mirrors based on the needle optimization technique. Theory.

M. Trubetskov, A. Tikhonravov, and V. Pervak  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20637-20647 (2008)
http://dx.doi.org/10.1364/OE.16.020637


View Full Text Article

Enhanced HTML    Acrobat PDF (2582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We combine powerful and well-proven needle-optimization technique with time-domain optimization approach in order to obtain a new efficient method of designing dispersive mirrors. We also propose a new optimization criterion targeted at reaching shortest possible pulses with maximum possible energy at the exit of a compressor containing such mirrors. Proposed optimization criterion includes two parameters allowing one to adjust the relative weights of the mentioned targets with a high flexibility. The obtained results are compared with solutions of the “classical” optimization approach based on the optimization of a merit function comparing theoretical reflectance and group delay dispersion with target ones. The new approach allows obtaining simpler solutions providing better characteristics of the output pulse.

© 2008 Optical Society of America

OCIS Codes
(310.1620) Thin films : Interference coatings
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Thin Films

History
Original Manuscript: November 11, 2008
Revised Manuscript: November 25, 2008
Manuscript Accepted: November 25, 2008
Published: November 26, 2008

Citation
M. Trubetskov, A. Tikhonravov, and V. Pervak, "Time-domain approach for designing dispersive mirrors based on the needle optimization technique. Theory.," Opt. Express 16, 20637-20647 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20637


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994). [CrossRef] [PubMed]
  2. V. Pervak, C. Tiesset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, "High-dispersive mirrors for femtosecond lasers," Opt. Express 16, 10220-10233 (2008). [CrossRef] [PubMed]
  3. G. Steinmeyer, "Femtosecond dispersion compensation with multilayer coatings: toward the optical octave," Appl. Opt. 45, 1484-1490 (2006) [CrossRef] [PubMed]
  4. V. Yakovlev and G. Tempea, "Optimization of Chirped Mirrors," Appl. Opt. 41, 6514-6520 (2002). [CrossRef] [PubMed]
  5. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Ultrabroadband double-chirped mirror pairs for generation of octave spectra," J. Opt. Soc. Am. B 18, 882-885 (2001) [CrossRef]
  6. J. R. Birge and F. X. Kärtner, "Efficient optimization of multilayer coatings for ultrafast optics using analytic gradients of dispersion," Appl. Opt. 46, 2656-2662 (2007) [CrossRef] [PubMed]
  7. O. Nohadani, J. R. Birge, F. X. Kärtner, and D. J. Bertsimas, "Robust chirped mirrors," Appl. Opt. 47, 2630-2636 (2008) [CrossRef] [PubMed]
  8. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70,S51-S57 (2000). [CrossRef]
  9. A. V. Tikhonravov, M. K. Trubetskov, U. Keller, and N. Matuschek, "Designing of coatings for femtosecond lasers with phase derivatives targets," Proc. SPIE 3738, 221-229 (1999). [CrossRef]
  10. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Haensch, and Th. Udem, "High harmonic frequency comb for high resolution spectroscopy," Phys. Rev. Lett. 100, 253901 (2008). [CrossRef] [PubMed]
  11. P. Dombi, V. S. Yakovlev, K. O'Keeffe, T. Fuji, M. Lezius, and G. Tempea, "Pulse compression with time-domain optimized chirped mirrors," Opt. Express 13, 10888-10894 (2005). [CrossRef] [PubMed]
  12. Sh. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, Gif-sur-Yvette, 1992).
  13. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996). [CrossRef] [PubMed]
  14. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Optical coating design approaches based on the needle optimization technique," Appl. Opt. 46, 704-710 (2007). [CrossRef] [PubMed]
  15. A. V. Tikhonravov, M. K. Trubetskov, V. Pervak, F. Krausz, and A. Apolonski, "Design, Fabrication and Reverse Engineering of Broad Band Chirped Mirrors," in Optical Interference Coatings, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WB4.
  16. V. Pervak, S. Naumov, A. Cavalieri, X. Gu, M. K. Trubetskov, A. V. Tikhonravov, F. Krausz, and A. Apolonski, "Advanced Dispersive Optics for the VIS-IR Range," in Optical Interference Coatings, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WA9.
  17. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski. "1.5-octave chirped mirror for pulse compression down to sub-3 fs," Appl. Phys. B 87, 5-12 (2006). [CrossRef]
  18. F. Abelès. "Recherches sur la propagation des ondes electromagnetique sinusoidales dans les milieux stratifies," Ann. de Physique 5, 596-640, 706-782 (1950).
  19. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com.
  20. J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297-301 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited