OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20666–20675

Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser

Rodolfo Martínez Manuel, M. G. Shlyagin, and S. V. Miridonov  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20666-20675 (2008)
http://dx.doi.org/10.1364/OE.16.020666


View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel technique for distributed detection and localization of vibrational disturbances is presented. It is based on a serial array of identical low-finesse Fabry-Perot interferometers interrogated at a fixed wavelength by DFB diode laser intensity modulated at 10 KHz. Interferometers are formed directly in the single mode SMF-28 fiber by pairs of fiber Bragg gratings with reflectivity <0.05% each. A simple signal processing based on the Fourier transform of detected signals and evaluation of phases for different signal components enables localization of a perturbed interferometer with a high accuracy. In experiment, a localization accuracy of 10 meters has been demonstrated for 5 km long fiber after 1 s of averaging. The system has the capability of using well in excess of 100 interferometers in a single fiber channel. A simple sensor configuration and the use of low-frequency components make it potentially inexpensive and suitable for applications where a continuous monitoring of long structures has to be performed for appearance of vibrations.

© 2008 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 29, 2008
Revised Manuscript: October 4, 2008
Manuscript Accepted: October 6, 2008
Published: December 1, 2008

Citation
Rodolfo Martinez Manuel, M. G. Shlyagin, and S. V. Miridonov, "Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser," Opt. Express 16, 20666-20675 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20666


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Kirkendall and A. Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D: Appl. Phys. 37, R197-R216 (2004). [CrossRef]
  2. L. Alasaarela, P. Karioja and H. Kopola, "Comparison of distributed fiber optic sensing methods for location and quantity information measurements," Opt. Eng. 41, 181-189 (2002). [CrossRef]
  3. G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004). [CrossRef]
  4. G. A. Cranch, P. J. Nash, and C. K. Kirdendall, "Large-scale remote interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications," IEEE Sens. J. 3, 19-30 (2003). [CrossRef]
  5. J. P. F. Wooler and RogerI. Crickmore, "Fibre optic sensors for seismic intruder detection," Proc. SPIE 5855, 278-281 (2005). [CrossRef]
  6. J. P. F. Wooler and R. I. Crickmore, "Fiber-optic microphones for battlefield acoustics," Appl. Opt. 46, 2486-2491 (2007). [CrossRef] [PubMed]
  7. J. C. Juarez and H. F. Taylor, "Field test of a distributed fiber-optic intrusion sensor system for long perimeters," Appl. Opt. 46, 1968-1971 (2007). [CrossRef] [PubMed]
  8. Z. Zhang and X. Bao, "Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system," Opt. Express 16, 10240-10247 (2008). [CrossRef] [PubMed]
  9. J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed fibre sensing system enabling location of disturbance in Sanqac loop interferometer," Proc. SPIE 838, 325-328 (1987).
  10. S. J. Russell, K. R. C. Brady, and J. P. Dakin, "Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer," J. Lightwave Technol. 19, 205-213 (2001). [CrossRef]
  11. A. A. Chtcherbakov, P. L. Swart and S. J. Spammer, "Mach-Zehnder and modified Sagnac-distributed fiber-optic impact sensor," Appl. Opt. 37, 3432-3437 (1998). [CrossRef]
  12. Q. Sun, D. Liu, J. Wang, and H. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008). [CrossRef]
  13. S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuators A 135, 570-579 (2007). [CrossRef]
  14. G. Hong, B. Jia, and H. Tang, "Location of a wideband perturbation using a fiber Fox-Smith interferometer," J. Lightwave Technol. 25, 3057-3061 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited