OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20834–20847

Label-free and selective nonlinear fiber-optical biosensing

Johan R. Ott, Mikkel Heuck, Christian Agger, Per D. Rasmussen, and Ole Bang  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 20834-20847 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain spectrum (a shift of the Stokes- or anti-Stokes wavelength) caused by the selective capture of biomolecules by a sensor layer immobilised on the walls of the holes in the fiber. We find that such changes in the MI gain spectrum can be made detectable, and that engineering of the dispersion is important for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 29, 2008
Revised Manuscript: November 26, 2008
Manuscript Accepted: November 26, 2008
Published: December 2, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Johan R. Ott, Mikkel Heuck, Christian Agger, Per D. Rasmussen, and Ole Bang, "Label-free and selective nonlinear fiber-optical biosensing," Opt. Express 16, 20834-20847 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Bosch, A. J. R. Snchez, F. S. Rojas, and C. B. Ojeda, "Recent development in optical fiber biosensors," Sensors 70, 797-859 (2007). [CrossRef]
  2. L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006). [CrossRef] [PubMed]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008). [CrossRef]
  4. J.-F. Masson, K. Hamersky, S. Beaudoin, and K. S. Booksh, "In vitro biochemical monitoring with fiber optics surface plasmon resonance sensors," Proc. SPIE 5261, 123 (2004). [CrossRef]
  5. D. A. Markov, K. Swinney, and D. J. Bornhop, "Label-free molecular interaction determinations with nanoscale interferometry," J. Am. Chem. Soc. 126, 16659 (2004). [CrossRef] [PubMed]
  6. T.-W Koo, S. Chan, and A. A. Berlin, "Single-molecule detection of biomolecules by surface-enhanced coherent anti-stokes Raman scattering," Opt. Lett. 30, 1024 (2005). [CrossRef] [PubMed]
  7. Company web site http://www.resrchintl.com/raptor-detection-system.html
  8. A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum. Electron. QE-16, 694-697 (1980). [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Burlington, MA, USA, 2007).
  10. P. M. Moselund, M. Frosz, C. Thomsen, and O. Bang, "Backseeding modulational instability and supercontinuum generation," Opt. Express 16, 11954-11968 (2008). [CrossRef] [PubMed]
  11. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048 (2001). [CrossRef]
  12. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based four-wave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002). [CrossRef]
  13. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003). [CrossRef]
  14. P. St. J Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  15. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  16. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulational instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003). [CrossRef] [PubMed]
  17. T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188 (1999). [CrossRef]
  18. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001). [CrossRef]
  19. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  20. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004). [CrossRef]
  21. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen. H. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal fibers," Opt. Express 17, 4080-4087 (2004). [CrossRef]
  22. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. Martijn de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001). [CrossRef] [PubMed]
  23. Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006). [CrossRef]
  24. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005). [CrossRef] [PubMed]
  25. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006). [CrossRef] [PubMed]
  26. G. Emiliyanov, J. B. Jensen, O. Bang, A. Bjarklev, P. E. Hoiby, L. H. Pedersen, E. Kjaer, and L. Lindvold, "Localized biosensing with Topas microstructured polymer optical fiber," Opt. Lett. 32, 460 (2007); erratum ibid, 1059 (2007) [CrossRef] [PubMed]
  27. L. Rindorf and O. Bang, "Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing," J. Opt. Soc. Am. B 25, 310-324 (2008). [CrossRef]
  28. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006). [CrossRef] [PubMed]
  29. F. Kajzar, "Third Harmonic Generation," Chapter 10 in Characterization Techniques and Tabulations for Organic Nonlinear Optical materials," M. G. Kuzyk, C. W. Dirk, eds., (Marcel Dekker, Inc., New York 1998).
  30. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000). [CrossRef]
  31. J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001). [CrossRef] [PubMed]
  32. L. Rindorf and O. Bang, "Highly sensitive refractometer with a photonic-crystal-fiber long-period grating," Opt. Lett. 33, 563-565 (2008). [CrossRef] [PubMed]
  33. IAPWS 5C: "Release on refractive index of ordinary substance as a function of wavelength, temperature and pressure" (September 1997) published by International Association of the Properties of Water and Steam (IAPWS). In this work a temperature of T = 293.15K and a density of water of ρ = 1000kg·m−3 has been used.
  34. Comsol Multiphysics finite element package, http://www.comsol.com.
  35. M. H. Frosz, T. Sørensen, and O. Bang, "Nano-engineering of a photonic crystal fiber for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006). [CrossRef]
  36. P. D. Rasmussen, J. Laegsgaard, and O. Bang, "Degenerate four wave mixing in solid core photonic bandgap fibers," Opt. Express 16, 4059-4068 (2008). [CrossRef] [PubMed]
  37. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  38. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinumm generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002), [CrossRef]
  39. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited