OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20848–20863

Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser

Sava Sakadžić, Umit Demirbas, Thorsten R. Mempel, Anna Moore, Svetlana Ruvinskaya, David A. Boas, Alphan Sennaroglu, Franz X. Kartner, and James G. Fujimoto  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 20848-20863 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multi-photon microscopy (MPM) is a powerful tool for biomedical imaging, enabling molecular contrast and integrated structural and functional imaging on the cellular and subcellular level. However, the cost and complexity of femtosecond laser sources that are required in MPM are significant hurdles to widespread adoption of this important imaging modality. In this work, we describe femtosecond diode pumped Cr:LiCAF laser technology as a low cost alternative to femtosecond Ti:Sapphire lasers for MPM. Using single mode pump diodes which cost only $150 each, a diode pumped Cr:LiCAF laser generates ~70-fs duration, 1.8-nJ pulses at ~800 nm wavelengths, with a repetition rate of 100 MHz and average output power of 180 mW. Representative examples of MPM imaging in neuroscience, immunology, endocrinology and cancer research using Cr:LiCAF laser technology are presented. These studies demonstrate the potential of this laser source for use in a broad range of MPM applications.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(320.7090) Ultrafast optics : Ultrafast lasers
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: October 3, 2008
Revised Manuscript: November 26, 2008
Manuscript Accepted: November 27, 2008
Published: December 2, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Sava Sakadžic, Umit Demirbas, Thorsten R. Mempel, Anna Moore, Svetlana Ruvinskaya, David A. Boas, Alphan Sennaroglu, Franz X. Kaertner, and James G. Fujimoto, "Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser," Opt. Express 16, 20848-20863 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1368-1376 (2003). [CrossRef]
  3. J. N. Kerr and W. Denk, "Imaging in vivo: watching the brain in action," Nat. Rev. Neurosci. 9, 195-205 (2008). [CrossRef] [PubMed]
  4. W. Denk, D. W. Piston, and W. W. Webb, "Multi-photon molecular excitation in laser scanning microscopy," in Handbook of Biological Confocal Microscopy, 3. ed., J. B. Pawlay, ed. (Springer, New York, 2006), 535-549. [CrossRef]
  5. W. Denk and K. Svoboda, "Photon upmanship: Why multiphoton imaging is more than a gimmick," Neuron 18, 351-357 (1997). [CrossRef] [PubMed]
  6. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005). [CrossRef] [PubMed]
  7. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, "Two-photon excitation fluorescence microscopy," Annu. Rev. Biomed. Eng. 2, 399-429 (2000). [CrossRef]
  8. A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, "Multi-photon excitation microscopy," Biomed. Eng. Online 5, 1-14 (2006). [CrossRef]
  9. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, "Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability," Nat. Biotechnol. 17, 763-767 (1999). [CrossRef] [PubMed]
  10. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999). [CrossRef] [PubMed]
  11. J. N. Gannaway and C. J. R. Sheppard, "2nd-harmonic imaging in scanning optical microscope," Opt. Quantum Electron. 10, 435-439 (1978). [CrossRef]
  12. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320-322 (2000). [CrossRef]
  13. G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, "Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems," Bioimaging 4, 215-224 (1996). [CrossRef]
  14. I. Freund and M. Deutsch, "2nd-harmonic microscopy of biological tissue," Opt. Lett. 11, 94-96 (1986). [CrossRef] [PubMed]
  15. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. USA 100, 7081-7086 (2003). [CrossRef] [PubMed]
  16. A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA 99, 11014-11019 (2002). [CrossRef] [PubMed]
  17. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  18. I. Gryczynski, H. Szmacinski, and J. R. Lakowicz, "On the possibility of calcium imaging using Indo-1 with 3-photon excitation," Photochem. Photobiol. 62, 804-808 (1995). [CrossRef] [PubMed]
  19. J. R. Lakowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, and S. W. Hell, "Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and hoechst 33342 using three-photon excitation," Biophys. J. 72, 567-578 (1997). [CrossRef] [PubMed]
  20. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, "Measuring serotonin distribution in live cells with three-photon excitation," Science 275, 530-532 (1997). [CrossRef] [PubMed]
  21. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA 100, 7075-7080 (2003). [CrossRef] [PubMed]
  22. L. Canioni, S. Rivet, L. Sarger, R. Barille, P. Vacher, and P. Voisin, "Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope," Opt. Lett. 26, 515-517 (2001). [CrossRef]
  23. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998). [CrossRef] [PubMed]
  24. D. Yelin and Y. Silberberg, "Laser scanning third-harmonic-generation microscopy in biology," Opt. Express 5, 169-175 (1999). [CrossRef] [PubMed]
  25. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997). [CrossRef]
  26. D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006). [CrossRef]
  27. J. M. Girkin and G. McConnell, "Advances in laser sources for confocal and multiphoton microscopy," Microsc. Res. Tech. 67, 8-14 (2005). [CrossRef] [PubMed]
  28. A. Diaspro, G. Chirico, and M. Collini, "Two-photon fluorescence excitation and related techniques in biological microscopy," Q. Rev. Biophys. 38, 97-166 (2005). [CrossRef]
  29. K. Svoboda and R. Yasuda, "Principles of two-photon excitation microscopy and its applications to neuroscience," Neuron 50, 823-839 (2006). [CrossRef] [PubMed]
  30. D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, "All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging," IEEE Sel. Top. Quantum Electron. 2, 1051-1065 (1996). [CrossRef]
  31. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, "Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses," Opt. Commun. 281, 1841-1849 (2008). [CrossRef]
  32. J. M. Girkin, "Optical physics enables advances in multiphoton imaging," J. Phys. D 36, R250-R258 (2003). [CrossRef]
  33. I. D. Johnson, "Practical considerations in the selection and application of fluorescent probes," in Handbook of Biological Confocal Microscopy, 3 ed., J. B. Pawlay, ed. (Springer, New York, 2006), 353-367. [CrossRef]
  34. C. Xu and W. W. Webb, "Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm," J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]
  35. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, "Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy," Proc. Natl. Acad. Sci. USA 93, 10763-10768 (1996). [CrossRef] [PubMed]
  36. C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, "Multiphoton excitation cross-sections of molecular fluorophores," Bioimaging 4, 198-207 (1996). [CrossRef]
  37. F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, "Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging," J. Microsc. 208, 108-115 (2002). [CrossRef] [PubMed]
  38. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003). [CrossRef] [PubMed]
  39. M. A. Albota, C. Xu, and W. W. Webb, "Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm," Appl. Opt. 37, 7352-7356 (1998). [CrossRef]
  40. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003). [CrossRef] [PubMed]
  41. N. S. Makarov, M. Drobizhev, and A. Rebane, "Two-photon absorption standards in the 550-1600 nm excitation wavelength range," Opt. Express 16, 4029-4047 (2008). [CrossRef] [PubMed]
  42. K. Svoboda, W. Denk, W. H. Knox, and S. Tsuda, "Two-photon-excitation scanning microscopy of living neurons with a saturable Bragg reflector mode-locked diode-pumped Cr:LiSrAlFl laser," Opt. Lett. 21, 1411-1413 (1996). [CrossRef] [PubMed]
  43. http://www.newport.com/file_store/Data_Sheet/Mai_Tai_DeepSee_Data_Sheet_(print_version_-_1_3_MB).pdf.
  44. http://www.coherent.com/downloads/ChameleonUltraFamily_DS_8.pdf.
  45. http://www.elliotscientific.com/pdf/Femtosource_SCI_245.pdf.
  46. http://www.newport.com/file_store/Data_Sheet/Opal_BB_data_sheet_(print_version_-_2_1_MB).pdf.
  47. http://www.coherent.com/downloads/MiraOPO_DSrevB_4a.pdf.
  48. http://www.highqlaser.at/kms/media/uploads/www_femtotrain_yb_ndglass_062007.pdf.
  49. http://www.tbwp.com/Time_Bandwidth/PDF_Docus/GLX-200.pdf.
  50. G. McConnell, G. L. Smith, J. M. Girkin, A. M. Gurney, and A. I. Ferguson, "Two-photon microscopy of fura-2-loaded cardiac myocytes with an all-solid-state tunable and visible femtosecond laser source," Opt. Lett. 28, 1742-1744 (2003). [CrossRef] [PubMed]
  51. G. McConnell and E. Riis, "Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2," Phys. Med. Biol. 49, 4757-4763 (2004). [CrossRef] [PubMed]
  52. G. McConnell, "Nonlinear optical microscopy at wavelengths exceeding 1.4 µm using a synchronously pumped femtosecond-pulsed optical parametric oscillator," Phys. Med. Biol. 52, 717-724 (2007). [CrossRef] [PubMed]
  53. K. Taira, T. Hashimoto, and H. Yokoyama, "Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode," Opt. Express 15, 2454-2458 (2007). [CrossRef] [PubMed]
  54. M. Kuramoto, N. Kitajima, H. C. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, "Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source," Opt. Lett. 32, 2726-2728 (2007). [CrossRef] [PubMed]
  55. H. Yokoyama, H. C. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, "Two-photon bioimaging with picosecond optical pulses from a semiconductor laser," Opt. Express 14, 3467-3471 (2006). [CrossRef] [PubMed]
  56. H. Yokoyama, H. Tsubokawa, H. C. Guo, J. Shikata, K. Sato, K. Takashima, K. Kashiwagi, N. Saito, H. Taniguchi, and H. Ito, "Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source," J. Biomed. Opt. 12, - (2007). [CrossRef] [PubMed]
  57. G. Robertson, D. Armstrong, M. J. P. Dymott, A. I. Ferguson, and G. L. Hogg, "Two-photon fluorescence microscopy with a diode-pumped Cr:LiSAF laser," Appl. Opt. 36, 2481-2483 (1997). [CrossRef] [PubMed]
  58. P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, "Application of a femtosecond self-sustaining mode-locked Ti-Sapphire laser to the field of laser scanning confocal microscopy," Opt. Quantum Electron. 24, 851-859 (1992). [CrossRef]
  59. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, "Laser performance of LiSAIF6:Cr3+," J. Appl. Phys. 66, 1051-1056 (1989). [CrossRef]
  60. P. M. W. French, R. Mellish, and J. R. Taylor, "Modelocked all-solid-state diode-pumped Cr:LiSAF laser," Opt. Lett. 18, 1934-1936 (1993). [CrossRef] [PubMed]
  61. G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, "Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode," Opt. Lett. 22, 1639-1641 (1997). [CrossRef]
  62. J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998). [CrossRef]
  63. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002). [CrossRef]
  64. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, "Highly compact and efficient femtosecond Cr:LiSAF lasers," IEEE J. Quantum Electron. 38, 360-368 (2002). [CrossRef]
  65. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties of Cr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992). [CrossRef]
  66. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, "LiCaAlF6:Cr3+: a promising new solid-state laser material," IEEE J. Quantum Electron. 24, 2243-2252 (1988). [CrossRef]
  67. U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kartner, and J. G. Fujimoto, "Diode-pumped, high-average power femtosecond Cr+3:LiCAF laser," Opt. Lett. 32, 3309-3311 (2007). [CrossRef] [PubMed]
  68. U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, "Highly efficient, low-cost femtosecond Cr3+:LiCAF laser pumped by single-mode diodes," Opt. Lett. 33, 590-592 (2008). [CrossRef] [PubMed]
  69. P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, "Generation of sub-10-fs pulses from a Kerr-lens modelocked Cr3+:LiCAF laser oscillator using third order dispersion compensating double chirped mirrors," Opt. Lett. 27, 1726-1729 (2002). [CrossRef]
  70. Q3. U. Keller, K. J. Weingarten, F. X. Kartner, D. kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. d. Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE Sel. Top. Quantum Electron. 2, 435-453 (1996). [CrossRef]
  71. Q4. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE Sel. Top. Quantum Electron. 2, 454-464 (1996). [CrossRef]
  72. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. A 16, 46-56 (1999). [CrossRef]
  73. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, "Control of solid-state laser dynamics by semiconductor devices," Opt. Eng. 34, 2024-2036 (1995). [CrossRef]
  74. A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, "Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo," Nat. Methods 1, 31-37 (2004). [CrossRef]
  75. T. R. Mempel, S. E. Henrickson, and U. H. von Andrian, "T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases," Nature 427, 154-159 (2004). [CrossRef] [PubMed]
  76. R. A. Warnock, S. Askari, E. C. Butcher, and U. H. von Andrian, "Molecular mechanisms of lymphocyte homing to peripheral lymph nodes," J. Exp. Med. 187, 205-216 (1998). [CrossRef] [PubMed]
  77. U. H. von Andrian and T. R. Mempel, "Homing and cellular traffic in lymph nodes," Nat. Rev. Immunol. 3, 867-878 (2003). [CrossRef] [PubMed]
  78. A. Moore, E. Marecos, A. Bogdanov, and R. Weissleder, "Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model," Radiology 214, 568-574 (2000). [PubMed]
  79. W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowbridge, D. W. Tank, and R. Yuste, "Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy," J. Neurosci. Methods 54, 151-162 (1994). [CrossRef] [PubMed]
  80. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, "In vivo dendritic calcium dynamics in neocortical pyramidal neurons," Nature 385, 161-165 (1997). [CrossRef] [PubMed]
  81. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. USA 95, 15741-15746 (1998). [CrossRef] [PubMed]
  82. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two-photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Methods 111, 29-37 (2001). [CrossRef] [PubMed]
  83. P. Theer and W. Denk, "On the fundamental imaging-depth limit in two-photon microscopy," J. Opt. Soc. Am. A 23, 3139-3149 (2006). [CrossRef]
  84. P. Theer, M. T. Hasan, and W. Denk, "Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003). [CrossRef] [PubMed]
  85. E. Beaurepaire, M. Oheim, and J. Mertz, "Ultra-deep two-photon fluorescence excitation in turbid media," Opt. Commun. 188, 25-29 (2001). [CrossRef]
  86. M. Rueckel, J. A. Mack-Bucher, and W. Denk, "Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing," Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006). [CrossRef] [PubMed]
  87. P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, "Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane," Appl. Phys. Lett. 91, 3 (2007). [CrossRef]
  88. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, "Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror," J. Microsc. 206, 65-71 (2002). [CrossRef] [PubMed]
  89. M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J. Microsc. 200, 105-108 (2000). [CrossRef] [PubMed]
  90. F. Helmchen and W. Denk, "New developments in multiphoton microscopy," Curr. Opin. Neurobiol. 12, 593-601 (2002). [CrossRef] [PubMed]
  91. P. Verant, R. Serduc, B. Van Der Sanden, C. Remy, and J. C. Vial, "A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy," J. Cereb. Blood Flow Metab. 27, 1072-1081 (2007).
  92. E. J. Yoder and D. Kleinfeld, "Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy," Microsc. Res. Tech. 56, 304-305 (2002). [CrossRef] [PubMed]
  93. J. Schummers, H. Yu, and M. Sur, "Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex," Science 320, 1638-1643 (2008). [CrossRef] [PubMed]
  94. M. J. Pittet and T. R. Mempel, "Regulation of T-cell migration and effector functions: insights from in vivo imaging studies," Immunol. Rev. 221, 107-129 (2008). [CrossRef] [PubMed]
  95. A. Isemann and C. Fallnich, "High-power Colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes," Opt. Express 11, 259-264 (2003). [CrossRef] [PubMed]
  96. S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, "Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides," J. Electron. Mater. 33, 774-779 (2004). [CrossRef]
  97. S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kartner, and E. P. Ippen, "Large-area broadband saturable Bragg reflectors by use of oxidized AlAs," Opt. Lett. 29, 2551-2553 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3026 KB)     
» Media 2: MOV (675 KB)     
» Media 3: MOV (2832 KB)     
» Media 4: MOV (3192 KB)     
» Media 5: MOV (1639 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited