OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20864–20868

On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum

Miles J. Padgett  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20864-20868 (2008)
http://dx.doi.org/10.1364/OE.16.020864


View Full Text Article

Enhanced HTML    Acrobat PDF (107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Abraham-Minkowski dilemma relates to the disputed value of the optical momentum within a dielectric medium and whether the free-space value should be divided (Abraham) or multiplied (Minkowski) by the refractive index. Although undoubtedly simplistic, these two approaches provide intuitive insight to many subtle problems in optical physics. This paper reviews a modified version of the Einstein box argument that supports an Abraham formulation, then considers diffraction within a dielectric medium and shows it supports a simple Minkowski formulation, i.e. that the optical momentum should be multiplied by the refractive index.

© 2008 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 8, 2008
Revised Manuscript: November 13, 2008
Manuscript Accepted: November 20, 2008
Published: December 2, 2008

Citation
Miles J. Padgett, "On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum," Opt. Express 16, 20864-20868 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979). [CrossRef]
  2. D. Nelson, "Momentum, pseudomomentum, and wave momentum - toward resolving the Minkowski-Abraham controversy," Phys. Rev. A 44, 3985-3996 (1991). [CrossRef] [PubMed]
  3. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2004). [CrossRef] [PubMed]
  4. U. Leonhardt, "Optics: Momentum in an uncertain light," Nature 444, 823-824 (2006). [CrossRef] [PubMed]
  5. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Colloquium: Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys. 79, 1197-1216 (2007). [CrossRef]
  6. M. Abraham, Rend. Circ. Matem. Palermo 28, 1 (1909).
  7. A. Einstein, "The principle of conservation of the centre of gravity movement and the inertia of energy," Ann. Phys. 20, 627-633 (1906). [CrossRef]
  8. S. Weinberg, "Gravitation and Cosmology: Principles and Applications of the General Theory, " p. 46 (1972).
  9. H. Minkowski, Nachr. Ges. Wiss. Gottn Math.-Phys. Kl. 53, 472-525 (1908).
  10. I. Brevik, "Phenomenological photons and the uncertainty principle," Eur. J. Phys. 2, 37-43 (1981). [CrossRef]
  11. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D 40, 2666-2670 (2007) [CrossRef]
  12. G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W. Streed, W. Ketterle, and D. E. Pritchard, "Photon Recoil Momentum in Dispersive Media," Phys. Rev. Lett. 94, 170403 (2005). [CrossRef] [PubMed]
  13. J. Guck, R. Ananthakrishnan, H. Mahmood, T. Moon, C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784 (2001). [CrossRef] [PubMed]
  14. A. Gibson, M. Kimmitt, and A. Walker, "Photon drag in germanium," Appl. Phys. Lett. 17, 75-77 (1970). [CrossRef]
  15. R. Loudon, S. Barnett, and C. Baxter, "Radiation pressure and momentum transfer in dielectrics: The photon drag effect," Phys. Rev. A 71, 063802 (2005). [CrossRef]
  16. M. Kristensen and J. P. Woerdman, "Is photon angular momentum conserved in a dielectric medium?" Phys. Rev. Lett. 72, 2171-2174 (1994). [CrossRef] [PubMed]
  17. R. Loudon, "Theory of the radiation pressure on dielectric surfaces," J. Mod. Opt. 49, 821-838 (2002). [CrossRef]
  18. R. Loudon and S. M. Barnett, "Theory of the radiation pressure on dielectric slabs, prisms and single surfaces," Opt. Express 14, 11855-11869 (2006). [CrossRef] [PubMed]
  19. M. Padgett, S. Barnett, and R. Loudon, "The angular momentum of light inside a dielectric," J. Mod. Opt. 50, 1555-1562 (2003).
  20. R. Loudon, "Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics," Phys. Rev. A 68, 013806 (2003). [CrossRef]
  21. R. Jones and B. Leslie, "The Measurement of Optical Radiation Pressure in Dispersive Media," Proc. Roy. Soc. London A 360, 347-363 (1978). [CrossRef]
  22. W. She, J. Yu, and R. Feng, "Observation of a push force on the end face of a nm fiber taper exerted by outgoing light," arXiv:0806.2442v1
  23. M. Mansuripur, "Radiation pressure on submerged mirrors: Implications for the momentum of light in dielectric media," Opt. Express 15, 2677-2682 (2007). [CrossRef] [PubMed]
  24. S. M. Barnett and R. Loudon, "On the electromagnetic force on a dielectric medium," J. Phys. B 39, S671-S684 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited