OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20908–20919

Squeezed state generation in photonic crystal microcavities

M. G. Banaee and Jeff F. Young  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20908-20919 (2008)
http://dx.doi.org/10.1364/OE.16.020908


View Full Text Article

Enhanced HTML    Acrobat PDF (638 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The feasibility of using a parametric down-conversion process to generate squeezed electromagnetic states in three dimensional photonic crystal microcavity structures is investigated for the first time. The spectrum of the squeezed light is theoretically calculated by using an open cavity quantum mechanical formalism. The cavity communicates with two main channels, which model vertical radiation losses and coupling into a single-mode waveguide respectively. The amount of squeezing is determined by the correlation functions relating the field quadratures of light coupled into the waveguide. All of the relevant model parameters are realistically estimated for structures made in Al0.3Ga0.7As, using finite-difference time-domain simulations. Squeezing up to ~30% below the shot noise level is predicted for 10 mW average power, 80 MHz repetition, 500 ps excitation pulses using in a [111] oriented wafer.

© 2008 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.6570) Quantum optics : Squeezed states
(160.5298) Materials : Photonic crystals

ToC Category:
Quantum Optics

History
Original Manuscript: September 23, 2008
Revised Manuscript: November 12, 2008
Manuscript Accepted: November 28, 2008
Published: December 3, 2008

Citation
M. G. Banaee and Jeff F. Young, "Squeezed state generation in photonic crystal microcavities," Opt. Express 16, 20908-20919 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Shields, "Semiconductor quantum light sources," Nature Photon. 1, 215-223 (2007). [CrossRef]
  2. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, "A single-photon server with just one atom," Nature Phys. 3, 253-255 (2007). [CrossRef]
  3. M. Dusek, N. Lutkenhaus, and M. Hendrych, "Quantum Cryptography," Progress in Optics, E. Wolf, ed., (Elsevier, 2006), Vol. 49.
  4. E. Knill, L. Laflamme, and G. J. Milburn, "Efficient linear optics quantum computation," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  5. S. L. Braunstein and A. K. Pati, Quantum information with continuous variables (Kluwer Academic Publishers, 2003).
  6. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional quantum teleportation," Science 282, 706-709 (1998). [CrossRef] [PubMed]
  7. S. L. Braunstein and P. van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77513-577 (2005). [CrossRef]
  8. J. A. Gaj,  et al., "Semiconductor heterostructures for spintronics and quantum information," C. R. Physique 8, 243-252 (2007). [CrossRef]
  9. G. Burkard, "Spin qubits: Connect the dots," Nature Phys. 2, 807-808 (2006). [CrossRef]
  10. M.W. McCutcheon, G.W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
  11. J. P. Karr, A. Bass, R. Houdre, and E. Giacobino, "Squeezing in semiconductor microcavities in the strongcoupling regime," Phys. Rev. A 69,031802(R) (2004).
  12. A. N. Vamivakas, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Theory of spontaneous parametric downconversion from photonic crystals," Phys. Rev. A 70, 043810 (2004). [CrossRef]
  13. G. Weihs, "Parametric down-conversion in photonic crystal waveguides," Int. J. Mod. Phys. B 20, 1543-1550 (2006). [CrossRef]
  14. L. Xiao, Y. Wang, W. Zhang, Y. Huang, and J. Peng, "A 2-D photonic crystal based source of polarization entangled photon pairs with high nonlinear conversion efficiency and without walk-off compensation," Opt. Commun. 272, 525-528 (2007). [CrossRef]
  15. C. Viviescas and G. Hackenbroich, "Field quantization for open optical cavities," Phys. Rev. A 67, 013805 (2003). [CrossRef]
  16. H. J. Kimble, Fundamental Systems in Quantum Optics (Elsevier Science Publishing, 1992) Chap. 10.
  17. H. Carmichael, An open systems approach to quantum optics (Springer-Verlag, 1993).
  18. S. Reynaud, C. Fabre, and E. Giacobino, " Quantum fluctuations in a 2-mode parametric oscillator," J. Opt. Soc. Am. B 4, 152-1524 (1987). [CrossRef]
  19. C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, "Squeezing in detuned degenerate optical parametric oscillators," Quantum Opt. 2, 159-187 (1990). [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).
  21. M. G. Banaee, A. G. Pattantyus-Abraham, M. W. McCutcheon, G. W. Rieger, and J. F. Young, "Efficient coupling of photonic crystal microcavity modes to a ridge waveguide," Appl. Phys. Lett. 90, 193106 (2007). [CrossRef]
  22. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  23. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  24. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007). [CrossRef]
  25. H. Feshbach, "A unified theory of nuclear reactions. II," Ann. Phys. 19, 287-313 (1962). [CrossRef]
  26. S. Nordholm and S. A. Rice, "A quantum ergodic theory approach to unimolecular fragmentation," J. Chem. Phys. 62, 157-168 (1975). [CrossRef]
  27. M. Shapiro and P. Brumer, "Quantum control of bound and continuum state dynamics," Phys. Rep. 425, 195-264 (2006). [CrossRef]
  28. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995).
  29. M. Hillery and L. Mlodinow, "Quantized fields in a nonlinear dielectric medium: a microscopic approach," Phys. Rev. A 55, 678-689 (1997). [CrossRef]
  30. M. Hillery, Quantum Squeezing (Springer-Verlag, 2004), edited by P. D. Drummond, and Z. Ficek, chap. 2.
  31. Z. Y. Ou, S. F. Pereira, and H. J. Kimble, "Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification," Appl. Phys. B 55, 265-278 (1992). [CrossRef]
  32. M. D. Reid and P.D. Drummond, "Quantum correlations of phase in nondegenerate parametric oscillation," Phys. Rev. Lett,  60, 2731-2733 (1988). [CrossRef] [PubMed]
  33. M. D. Reid and P. D. Drummond, "Correlations in nondegenerate parametric oscillation II, below threshold results," Phys. Rev. A 41, 3930-3949 (1990). [CrossRef] [PubMed]
  34. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, "Design of a channel drop filter by using a donortype cavity with high-quality factor in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 82, 1341-1343 (2003). [CrossRef]
  35. S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific Publishing Company, 1994). [CrossRef]
  36. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadec, and A. Levenson, "Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length," Phys. Rev. Lett. 89, 043901 (2002). [PubMed]
  37. T. Asano, Bong-Shik Song, Y. Akahane, and S. Noda, "Ultrahigh-Q Nanocavities in Two-Dimensional Photonic Crystal Slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited