OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20981–20986

Improving solid to hollow core transmission for integrated ARROW waveguides

Evan J. Lunt, Philip Measor, Brian S. Phillips, Sergei Kühn, Holger Schmidt, and Aaron R. Hawkins  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 20981-20986 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical sensing platforms based on anti-resonant reflecting optical waveguides (ARROWs) with hollow cores have been used for bioanalysis and atomic spectroscopy. These integrated platforms require that hollow waveguides interface with standard solid waveguides on the substrate to couple light into and out of test media. Previous designs required light at these interfaces to pass through the anti-resonant layers. We present a new ARROW design which coats the top and sides of the hollow core with only SiO2, allowing for high interface transmission between solid and hollow waveguides. The improvement in interface transmission with this design is demonstrated experimentally and increases from 35% to 79%. Given these parameters, higher optical throughputs are possible using single SiO2 coatings when hollow waveguides are shorter than 5.8 mm.

© 2008 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.4170) Optical devices : Multilayers
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: October 16, 2008
Revised Manuscript: November 25, 2008
Manuscript Accepted: November 26, 2008
Published: December 3, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Evan J. Lunt, Philip Measor, Brian S. Phillips, Sergei Kühn, Holger Schmidt, and Aaron R. Hawkins, "Improving solid to hollow core transmission for integrated ARROW waveguides," Opt. Express 16, 20981-20986 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Dress and H. Franke, "A cylindrical liquid-core waveguide," Appl. Phys. B 63, 12-19 (1996). [CrossRef]
  2. A. Datta, I.-Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. Dasgupta, "Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon," IEEE Sensors J. 3, 788-795 (2003). [CrossRef]
  3. W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, "Optical waveguides with an aqueous core and a low-index nanoporous cladding," Opt. Express 12, 6446-6455 (2004). [CrossRef] [PubMed]
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A Dielectric Omnidirectional Reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  5. S. Mandal and D. Erickson, "Optofluidic transport in liquid core waveguiding structures," Appl. Phys. Lett. 90, 184103 (2007). [CrossRef]
  6. G. R. Hadley, J. G. Fleming, and S.-Y. Lin, "Bragg fiber design for linear polarization," Opt. Lett. 29, 809-811 (2004). [CrossRef] [PubMed]
  7. R. Bernini, S. Campopiano, and L. Zeni, "Silicon micromachined hollow optical waveguides for sensing applications," IEEE J. Sel. Top. Quantum Electron. 8, 106-110 (2002). [CrossRef]
  8. D. Yin, H. Schmidt, J. Barber, and A. Hawkins, "Integrated ARROW waveguides with hollow cores," Opt. Express 12, 2710-2715 (2004). [CrossRef] [PubMed]
  9. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  10. J. Barber, E. Lunt, Z. George, D. Yin, H. Schmidt, and A. Hawkins, "Integrated hollow waveguides with archshaped cores," IEEE Photonics Technol. Lett. 18, 28-30 (2006). [CrossRef]
  11. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, "Planar optofluidic chip for single particle detection, manipulation, and analysis," Lab. Chip 7, 1171-1175 (2007). [CrossRef] [PubMed]
  12. D. Yin, J. Barber, A. Hawkins, and H. Schmidt, "Waveguide loss optimization in hollow-core ARROW waveguides," Opt. Express 13, 9331-9336 (2005). [CrossRef] [PubMed]
  13. H. Schmidt, D. Yin, J. Barber, and A. Hawkins, "Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Topics Quantum Electron. 11, 519-527 (2005). [CrossRef]
  14. J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993). [CrossRef]
  15. P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, "Hollow-core waveguide characterization by optically induced particle transport," Opt. Lett. 33, 672-674 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited