OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20987–21003

Calibration of dynamic holographic optical tweezers for force measurements on biomaterials

Astrid van der Horst and Nancy R. Forde  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 20987-21003 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holographic optical tweezers (HOTs) enable the manipulation of multiple traps independently in three dimensions in real time. Application of this technique to force measurements requires calibration of trap stiffness and its position dependence. Here, we determine the trap stiffness of HOTs as they are steered in two dimensions. To do this, we trap a single particle in a multiple-trap configuration and analyze the power spectrum of the laser deflection on a position-sensitive photodiode. With this method, the relative trap strengths can be determined independent of exact particle size, and high stiffnesses can be probed because of the high bandwidth of the photodiode. We find a trap stiffness for each of three HOT traps of κ ~26 pN/µm per 100 mW of laser power. Importantly, we find that this stiffness remains constant within ±4% over 20µm displacements of a trap. We also investigate the minimum step size achievable when steering a trap with HOTs, and find that traps can be stepped and detected within ~2 nm in our instrument, although there is an underlying position modulation of the traps of comparable scale that arises from SLM addressing. The independence of trap stiffness on steering angle over wide ranges and the nanometer positioning accuracy of HOTs demonstrate the applicability of this technique to quantitative study of force response of extended biomaterials such as cells or elastomeric protein networks.

© 2008 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 23, 2008
Revised Manuscript: November 27, 2008
Manuscript Accepted: November 28, 2008
Published: December 3, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Astrid van der Horst and Nancy R. Forde, "Calibration of dynamic holographic optical tweezers for force measurements on biomaterials," Opt. Express 16, 20987-21003 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11,288-290 (1986). [CrossRef] [PubMed]
  2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent advances in optical tweezers," Annu. Rev. Biochem. 77, 205-228 (2008). [CrossRef] [PubMed]
  3. W. J. Greenleaf, M. T. Woodside, and S. M. Block, "High-resolution, single-molecule measurements of biomolecular motion," Annu. Rev. Biophys. Biomol. Struct. 36, 171-190 (2007). [CrossRef] [PubMed]
  4. C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, "Mechanical processes in biochemistry," Annu. Rev. Biochem. 73, 705-748 (2004). [CrossRef] [PubMed]
  5. G. Lenormand, S. H’enon, A. Richert, J. Siméon, and F. Gallet, "Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton," Biophys. J. 81, 43-56 (2001). [CrossRef] [PubMed]
  6. K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope," Cytometry 14, 105-114 (1993). [CrossRef] [PubMed]
  7. D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75, 2960-2970 (2004). [CrossRef]
  8. Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J. Opt. A: Pure Appl. Opt. 9, S256-S263 (2007). [CrossRef]
  9. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998). [CrossRef]
  10. M. Reicherter, T. Haist, E. U. Wagemann, H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999). [CrossRef]
  11. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr., "The Kinoform: A New Wavefront Reconstruction Device," IBM J. Res. Dev. 13, 150-155 (1969). [CrossRef]
  12. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  13. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  14. K. D. Wulff, D. G. Cole, R. L. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, "Aberration correction in holographic optical tweezers," Opt. Express 14, 4169-4174 (2006). [CrossRef] [PubMed]
  15. G. C. Spalding, J. Courtial, and R. Di Leonardo, "Holographic optical tweezers," in Structured Light and Its Applications, D. L. Andrews, ed. (Academic Press, 2008) pp. 139-168.
  16. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  17. K. Dholakia, G. Spalding, and M. MacDonald, "Optical tweezers: the next generation," Phys. World 15, 31-35 (2002).
  18. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  19. F. Belloni, S. Monneret, F. Monduc, and M. Scordia, "Multiple holographic optical tweezers parallel calibration with optical potential well characterization," Opt. Express 16, 9011-9020 (2008). [CrossRef] [PubMed]
  20. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004). [CrossRef]
  21. R. Di Leonardo, F. Ianni, and G. Ruocco, "Computer generation of optimal holograms for optical trap arrays," Opt. Express 15, 1913-1922 (2007). [CrossRef] [PubMed]
  22. E. H¨allstig, L. Sj¨oqvist, and M. Lindgren, "Intensity variations using a quantized spatial light modulator for nonmechanical beam steering," Opt. Eng. 42, 613-619 (2003). [CrossRef]
  23. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, "Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order," J. Opt. Soc. Am. A 18, 205-215 (2001). [CrossRef]
  24. D. R. Burnham and D. McGloin, "Holographic optical trapping of aerosol droplets," Opt. Express 14, 4175-4181 (2006). [CrossRef] [PubMed]
  25. B. C. Carter, G. T. Shubeita, and S. P. Gross, "Tracking single particles: a user-friendly quantitative evaluation," Phys. Biol. 2, 60-72 (2005). [CrossRef] [PubMed]
  26. K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometerresolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996). [CrossRef]
  27. K. Berg-Sørensen and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75, 594-612 (2004). [CrossRef]
  28. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005). [CrossRef] [PubMed]
  29. S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A: Pure Appl. Opt. 9, S264-S266 (2007). [CrossRef]
  30. M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-dimensional tracking of ncd motility by back focal plane interferometry," Biophys. J. 74, 1074-1085 (1998). [CrossRef] [PubMed]
  31. S. Osten, S. Krüger, and A. Hermerschmidt, "New HDTV (1920×1080) phase-only SLM," Proc. SPIE 6487, 64870X (2007). [CrossRef]
  32. U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, "Laser beam shaping for micromaterial processing using a liquid crystal display," Proc. SPIE 6882, 688207 (2008). [CrossRef]
  33. S. Serati and J. Harriman, "Spatial light modulator considerations for beam control in optical manipulation applications," Proc. SPIE 6326, 63262W (2006). [CrossRef]
  34. J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, "Symmetry dependence of holograms for optical trapping," Opt. Lett. 30, 2086-2088 (2005). [CrossRef] [PubMed]
  35. C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005). [CrossRef] [PubMed]
  36. E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, "The effect of external forces on discrete motion within holographic optical tweezers," Opt. Express 15, 18268-18274 (2007). [CrossRef] [PubMed]
  37. M. T. Valentine, N. R. Guydosh, B. Gutiérrez-Medina, A. N. Fehr, J. O. Andreasson, and S. M. Block, "Precision steering of an optical trap by electro-optic deflection," Opt. Lett. 33, 599-601 (2008). [CrossRef] [PubMed]
  38. A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999). [CrossRef] [PubMed]
  39. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, "Characterizing and tracking single colloidal particles with video holographic microscopy," Opt. Express 15, 18275-18282 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited