OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 21076–21086

Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition

Michael H. Frosz, Peter M. Moselund, Per D. Rasmussen, Carsten L. Thomsen, and Ole Bang  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 21076-21086 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Supercontinuum light sources spanning into the ultraviolet-visible wavelength region are highly useful for applications such as fluorescence microscopy. A method of shifting the supercontinuum spectrum into this wavelength region has recently become well understood. The method relies on designing the group-velocity profile of the nonlinear fiber in which the supercontinuum is generated, so that red-shifted solitons are group-velocity matched to dispersive waves in the desired ultraviolet-visible wavelength region. The group-velocity profile of a photonic crystal fiber (PCF) can be engineered through the structure of the PCF, but this mostly modifies the group-velocity in the long-wavelength part of the spectrum. In this work, we first consider how the group-velocity profile can be engineered more directly in the short-wavelength part of the spectrum through alternative choices of the glass material from which the PCF is made. We then make simulations of supercontinuum generation in PCFs made of alternative glass materials. It is found that it is possible to increase the blue-shift of the generated supercontinuum by about 20 nm through a careful choice of glass composition, provided that the alternative glass composition does not have a significantly higher loss than silica in the near-infrared.

© 2008 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 27, 2008
Revised Manuscript: November 28, 2008
Manuscript Accepted: December 2, 2008
Published: December 4, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Michael H. Frosz, Peter M. Moselund, Per D. Rasmussen, Carsten L. Thomsen, and Ole Bang, "Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition," Opt. Express 16, 21076-21086 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  2. M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008). [CrossRef]
  3. J. Walewski, M. Borden, and S. Sanders, "Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy," Appl. Phys. B 79, 937-940 (2004). [CrossRef]
  4. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, "Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 15, 4848-4856 (2007),URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4848 [CrossRef] [PubMed]
  5. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred L. Terry, M. J. Freeman, M. Poulain, and G. Maz’e, "Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006), URL http://ol.osa.org/abstract.cfm?URI=ol-31-17-2553. [CrossRef] [PubMed]
  6. P. N. Prasad, Introduction to biophotonics (John Wiley & Sons Inc., 2003). [CrossRef]
  7. http://www.koheras.com/.
  8. K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, "Leica TCS SP5 X - White Light Laser," Appl. Lett. 29, Leica Microsystems (2008), http://www.leica-microsystems.com.
  9. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5715. [CrossRef] [PubMed]
  10. F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566. [CrossRef] [PubMed]
  11. P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600-4602 (2004). [CrossRef]
  12. J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, "Tunable enhancement of a soliton spectrum using an acoustic long-period grating," Opt. Express 15, 457-462 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13457. [CrossRef]
  13. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003). [CrossRef]
  14. M. H. Frosz, T. Sørensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692. [CrossRef]
  15. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, "Back-seeding of higher order gain processes in picosecond supercontinuum generation," Opt. Express 16, 11,954-11,968 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-16-11954. [CrossRef]
  16. P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Techn. 23, 13-18 (2005). [CrossRef]
  17. L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307 (2003). [CrossRef]
  18. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4614. [CrossRef] [PubMed]
  19. G. Genty, M. Lehtonen, and H. Ludvigsen, "Route to broadband blue-light generation in microstructured fibers," Opt. Lett. 30, 756-758 (2005), URL http://ol.osa.org/abstract.cfm?URI=ol-30-7-756. [CrossRef] [PubMed]
  20. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-21-9854. [CrossRef] [PubMed]
  21. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007). [CrossRef]
  22. J. M. Stone and J. C. Knight, "Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser," Opt. Express 16, 2670-2675 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-4-2670. [CrossRef] [PubMed]
  23. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006), http://link.aps.org/abstract/RMP/v78/p1135. [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, USA, 2007).
  25. N. Nishizawa and T. Goto, "Characteristics of pulse trapping by ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength," Opt. Express 10, 1151-1160 (2002), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-10-21-1151. [PubMed]
  26. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  27. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, "Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser," Opt. Express 16, 14,435-14,447 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-19-14435. [CrossRef]
  28. P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. M’elin, K. Schuster, J. Kobelke, and H. Bartelt, "Methods for visible supercontinuum generation in doped/undoped holey fibres," Proc. SPIE 6990, 699,007-1-4 (2008).
  29. V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Melin, K. Schuster, J. Kobelke, and H. Bartelt, "Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation," Proc. SPIE 6990, 69,900N-1-7 (2008a).
  30. V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. M’elin, "Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation," Opt. Lett. 33, 2011-2013 (2008b), URL http://ol.osa.org/abstract.cfm?URI=ol-33-17-2011. [CrossRef]
  31. J. W. Fleming, "Material dispersion in lightguide glasses," Electron. Lett. 14, 326-8 (1978). [CrossRef]
  32. J. W. Fleming, "Material dispersion in lightguide glasses [Erratum]," Electron. Lett. 15, 507 (1979). [CrossRef]
  33. I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965). [CrossRef]
  34. COMSOL Multiphysics 3.4 (2007), http://www.comsol.com.
  35. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett. 28, 1879-1881 (2003), URL http://ol.osa.org/abstract.cfm?URI=ol-28-20-1879. [CrossRef] [PubMed]
  36. P. V. Mamyshev and S. V. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076-1078 (1990). [CrossRef] [PubMed]
  37. J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schrodinger equation," Opt. Express 15,16 110-16123 (2007). [CrossRef]
  38. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  39. S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, "Characteristics of optical fibers in infrared wavelength region," Rev. Elect. Commun. Lab. 26, 453-67 (1978).
  40. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems," J. Lightwave Technol. 21, 61-68 (2003),http://dx.doi.org/10.1109/JLT.2003.808628. [CrossRef]
  41. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391. [CrossRef] [PubMed]
  42. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995), http://dx.doi.org/10.1103/PhysRevA.51.4086. [CrossRef] [PubMed]
  43. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838. [CrossRef] [PubMed]
  44. T. Kato, Y. Suetsugu, and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers," Opt. Lett. 20, 2279 (1995), URL http://ol.osa.org/abstract.cfm?URI=ol-20-22-2279. [CrossRef] [PubMed]
  45. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited