OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 21105–21118

Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source

Changho Chong, Takuya Suzuki, Atsushi Morosawa, and Tooru Sakai  »View Author Affiliations

Optics Express, Vol. 16, Issue 25, pp. 21105-21118 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports on a technique to improve the coherence length of a high-speed wavelength swept laser. The wavelength swept laser comprises a pigtailed semiconductor optical amplifier and a wavelength-scanning filter in a fiber extended cavity configuration. The laser operates in the 1310 nm wavelength region. The tunable filter consists of a diffraction grating and polygon mirror scanner. Littrow arrangement of external cavity in a specific geometry realizes the quasi-phase continuous tuning over wavelength range emphasizing coherent amplification of cavity modes resulting in spectral narrowing of the instantaneous linewidth to about 0.06nm. Improvement by a factor of two is confirmed in comparison with coherence length without using this technique. Peak power is 12 mW and wavelength swept range is 55 nm, from 1271 nm to 1326 nm. Measured coherence lengths of over 30 mm and 17 mm were achieved at scanning rates of 2.5 kHz and 20 kHz, respectively. Correlation of laser cavity parameters with spectral linewidth is also discussed by introducing the rate equations for multi-mode laser operation. Shorter cavity length is considered effective to further improve the coherence length in terms of shorter roundtrip time as well as higher mode suppression ratio because of higher carrier concentration on cavity modes around the filter center.

© 2008 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 18, 2008
Revised Manuscript: November 29, 2008
Manuscript Accepted: November 30, 2008
Published: December 5, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Changho Chong, Takuya Suzuki, Atsushi Morosawa, and Tooru Sakai, "Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source," Opt. Express 16, 21105-21118 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, Sy. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  4. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser," Opt. Lett. 22, 1704-1706 (1997). [CrossRef]
  5. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  7. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef] [PubMed]
  8. S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998). [CrossRef]
  9. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000). [CrossRef]
  10. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001). [CrossRef]
  11. J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001). [CrossRef]
  12. S. M. R. Motaghian Nezam, "High-speed polygon-scanner-based wavelength swept laser source in the telescope-less configurations with application in optical coherence tomography," Opt. Lett. 33, 1741-1743 (2008). [CrossRef] [PubMed]
  13. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett 30, 3159-3161 (2005). [CrossRef] [PubMed]
  14. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997). [CrossRef]
  15. Y. T. Pan, Z. G. Li, T. Q. Xie, and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003). [CrossRef] [PubMed]
  16. J. Su, J. Zhang, and Z. P. Chen, "In-vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography," Opt. Express 15,10390-10396 (2007). [CrossRef] [PubMed]
  17. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005). [CrossRef] [PubMed]
  18. R. Huber, M. Wojtkowski, J. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300nm, " Opt. Express 13, 10523-10538 (2005). [CrossRef] [PubMed]
  19. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles, " Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  20. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Numerical study of wavelength-swept semiconductor ring lasers: the role of refractiveindex nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications," Opt. Lett. 31, 760-762 (2006). [CrossRef] [PubMed]
  21. S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004). [CrossRef]
  22. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983(2003). [CrossRef] [PubMed]
  23. M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10,044009 (2005). [CrossRef]
  24. Q1. C. Chong, A. Morosawa, and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008). [CrossRef]
  25. Q2Q3. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter, " IEEE J. Sel. Top. Quantum Electron. 3,1087-1076 (1997). [CrossRef]
  26. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  27. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). [CrossRef] [PubMed]
  28. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005). [CrossRef] [PubMed]
  29. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005) [CrossRef]
  30. W. R. Trutna, Jr., and L. F. Stokes, "Continuously Tuned External Cavity Semiconductor Laser," J. Lightwave Technol. 11, 1279- 1286 (1993). [CrossRef]
  31. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988). [CrossRef]
  32. K. Inoue, T. Mukai, and T. Saitou, "Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier," Appl. Phys. Lett. 51, 1051-1053 (1987). [CrossRef]
  33. L. A. Coldren and S. W. Corzine "Diode Lasers and Photonic Integrated Circuits," (Wiley Series in Microwave and Optical Engineering, NY, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited