OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 21142–21148

Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial

Wei Wang, Hui Xing, Liang Fang, Yao Liu, Junxian Ma, Lan Lin, Changtao Wang, and Xiangang Luo  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 21142-21148 (2008)
http://dx.doi.org/10.1364/OE.16.021142


View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on coordinate transformation incorporated with conformal mapping approach, a sub-wavelength imaging device with magnification, called “planar hyperlens” is designed, capable of realizing far-field plane-to-plane imaging beyond the diffraction limit. The possible implementation method is proposed by using effective anisotropic metamaterial formed by alternating metallic and dielectric thin layers. The magnification performance of the designed multi-layer lensing structure is numerically simulated to confirm our theoretical analysis.

© 2008 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(160.1190) Materials : Anisotropic optical materials
(230.0230) Optical devices : Optical devices
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: October 22, 2008
Revised Manuscript: November 23, 2008
Manuscript Accepted: December 1, 2008
Published: December 5, 2008

Citation
Wei Wang, Hui Xing, Liang Fang, Yao Liu, Junxian Ma, Lan Lin, Changtao Wang, and Xiangang Luo, "Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial," Opt. Express 16, 21142-21148 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-21142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, "Negative refraction makes a perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. J. T. Shen and P. M. Platzman, "Near field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286-3288 (2002). [CrossRef]
  3. F. D. M. Haldane, "Electromagnetic surface modes at interfaces with negative refractive index make a "not-quite-perfect" lens," cond-mat/0206420 (2002).
  4. R. W. Ziolkowski, and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  5. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishnan, and J. B. Pendry, Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  6. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured Magnetic Materials for RF Flux Guides in Magnetic Resonance Imaging," Science 291, 849-851 (2001). [CrossRef] [PubMed]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  8. A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Opt. Express 11, 696-708 (2003). [CrossRef] [PubMed]
  9. A. Grbic and G. V. Eleftheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett. 92, 117403 (2004). [CrossRef] [PubMed]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  11. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  12. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  13. V. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  14. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations," Phys. Rev. B 74, 075103 (2006). [CrossRef]
  15. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  16. L. V. Alekseyev and E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432-3434 (2007) [CrossRef]
  17. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1687 (2007). [CrossRef] [PubMed]
  18. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15, 15886-15891 (2007). [CrossRef] [PubMed]
  19. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am. A 24, 52-59 (2007). [CrossRef]
  20. W. Wang, L. Lin, X. F. Yang, J. H. Cui, C. L. Du, and X. G. Luo, "Design of oblate cylindrical perfect lens using coordinate transformation," Opt. Express 16, 8094-8105 (2008). [CrossRef] [PubMed]
  21. P. Moon and D. E. Spencer, Field Theory Handbook, (Springer-Verlag, New York, (1971). [CrossRef]
  22. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  23. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near filed," J. Mod. Opt. 50, 1419-1430 (2003).
  24. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, "Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films," Opt. Express 16, 4217-4227 (2008). [CrossRef] [PubMed]
  25. S. A. Ramakrishna and J.B. Pendry, "Optical gain removes absorption and increases resolution in a near-field lens", arXiv:cond-mat/0206566 v1 28 Jun (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited