OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21170–21183

Simulation of an oil immersion objective lens: A simplified ray-optics model considering Abbe’s sine condition

Sun-Uk Hwang and Yong-Gu Lee  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21170-21183 (2008)
http://dx.doi.org/10.1364/OE.16.021170


View Full Text Article

Enhanced HTML    Acrobat PDF (569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a simplified mathematical ray-optics model for an oil immersion objective lens, considering Abbe’s sine condition, is presented. Based on the given parameters of the objective lens, the proposed model utilizes an approach based on a paraxial thin lens formulation. This is done to simplify the complexity of the objective lens by avoiding the consideration of many lens elements inside a single objective lens. To demonstrate the performance of the proposed model, comparisons with exact ray tracing method, based on the specification of real objective lens, are presented in terms of several different criteria including the variation of shape of the light cone, the extent of vignetting and the focus displacement. From the exemplary simulations, it was demonstrated that the proposed model can describe the focusing of light through the objective lens precisely, even when the incident beam rotates.

© 2008 Optical Society of America

OCIS Codes
(080.1753) Geometric optics : Computation methods
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Geometric optics

History
Original Manuscript: September 12, 2008
Revised Manuscript: November 28, 2008
Manuscript Accepted: December 4, 2008
Published: December 8, 2008

Citation
Sun-Uk Hwang and Yong-Gu Lee, "Simulation of an oil immersion objective lens: a simplified ray-optics model considering Abbe’s sine condition," Opt. Express 16, 21170-21183 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21170


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Haeberlé, "Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy," Optics Commun. 216, 55-63 (2003). [CrossRef]
  2. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, "Fast focus field calculations," Opt. Express 14, 11277-11291 (2006). [CrossRef] [PubMed]
  3. I Bruce, "ABCD transfer matrices and paraxial ray tracing for elliptic and hyperbolic lenses and mirrors," Eur. J. Physiol. 27, 393-406 (2006).
  4. F. Pedrotti and L. Pedrotti, Introduction to Optics (Prentice Hall, 1993), Chap. 4, Chap. 6.
  5. R. E. Fischer, Optical System Design (McGraw-Hill, 2008).
  6. E. Fallman and O. Axner, "Design for fully steerable dual-trap optical tweezers," Appl. Opt. 36, 2107-2113 (1997). [CrossRef] [PubMed]
  7. C. Mio, T. Gong, A. Terray, and D. W. M. Marr, "Design of a scanning laser optical trap for multi-particle manipulation," Rev. Sci. Instrum. 71, 2196-2200 (2000). [CrossRef]
  8. S.-U. Hwang and Y.-G. Lee, "Maximizing the workspace of optical tweezers," J. Opt. Soc. Korea 11, 162-172 (2007). [CrossRef]
  9. M. Mansuripur, Classical Optics and Its Applications (Cambridge University Press, 2000), Chap. 1.
  10. M. Gu, P. C. Ke, and X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Rev. Sci. Instrum. 68, 3666-3668 (1997). [CrossRef]
  11. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), Chap. 13.
  12. R. Juškaitis, "Characterizing high numerical aperture microscope objective lens lenses," in Optical Imaging and Microscopy (Springer-Verlag, 2007).
  13. H. Y. Fujimoto and T. T. Kashara, "Immersion objective lens system for microscope," U.S. Patent 7199938B2 (2007).
  14. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer graphics: Principles and practice in C (Addison-Wesley Professional, 1995), Chap. 16.
  15. M. Dinca and M. Pavelescu, "Caculus for a neutron imaging system based on a ccd camera," Rom. J. Phys. 51, 363-370 (2006).
  16. Y. Roichman, I. Cholis and D. G. Grier, "Volumetric imaging of holographic optical traps," Opt. Express 14, 10907-10912 (2006). [CrossRef] [PubMed]
  17. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  18. R. Dorn, S. Quabis, and G. Leuchs, "The focus of light - linear polarization breaks the rotational symmetry of the focal spot," J. Mod. Opt. 50, 1917-1926 (2003).
  19. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  20. N. Lindlein, S. Quabis, U. Peschel, and G. Leuchs, "High numerical aperture imaging with different polarization patterns," Opt. Express 15, 5827-5842 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited