OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21239–21247

Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses

Yuhua Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21239-21247 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral and annealing properties of a series of fiber Bragg gratings (FBGs) written in both H2-loaded and H2-free fibers by use of 800nm femtosecond laser pulse irradiation and created through a phase mask, have been investigated. It is found that type II FBGs inscribed in H2-loaded fibers exhibit superior spectral quality when compared with those written in H2-free fibers. Isochronal annealing tests shows that type II FBGs written in H2-free fibers have the highest thermal stability, followed (in order of stability) by H2-loaded type II, H2-free type I and then H2-loaded type I FBGs. The thermal stability of the H2-loaded type II FBGs can effectively be increased by using a high temperature pre-annealing treatment. After the treatment, type II FBGs written into both H2-free and H2-loaded fibers can sustain long-term annealing (for more than 12 hours) at temperatures of more than 1000 °C while their high reflectivities can still be maintained. This demonstrates the real potential of the FBGs developed and investigated in this work to be used as the ideal sensing elements for a series of high temperature measurement applications.

© 2008 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(350.3390) Other areas of optics : Laser materials processing
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 22, 2008
Revised Manuscript: December 4, 2008
Manuscript Accepted: December 4, 2008
Published: December 9, 2008

Yuhua Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, "Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses," Opt. Express 16, 21239-21247 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Othonos and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  3. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997). [CrossRef]
  4. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003). [CrossRef]
  5. S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003). [CrossRef]
  6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  7. J. Albert, "Permanent photoinduced refractive-index changes for Bragg gratings in silicate glass waveguides and fibers," MRS Bull. 23, 36 (1998).
  8. J. Albert, M. Fokine, and W. Margulis, "Grating formation in pure silica-core fibers," Opt. Lett. 27, 809-811 (2002). [CrossRef]
  9. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, "Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation," Opt. Lett. 28, 995-997 (2003). [CrossRef] [PubMed]
  10. K. A. Zagorulko, P. G. Kryukov, Y. V. Laronov, A. A. Rybaltovsky, E. M. Dianov, S. V. Chekalin, Y. A. Matveets, and V. O. Konpanets, "Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation," Opt. Express 12, 5996-6001 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-24-5996. [CrossRef] [PubMed]
  11. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004). [CrossRef]
  12. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003). [CrossRef] [PubMed]
  13. S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Taper," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006). [CrossRef]
  14. C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask," Opt. Lett. 29, 2127-2129 (2004). [CrossRef] [PubMed]
  15. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005). [CrossRef]
  16. C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-14-5377. [CrossRef] [PubMed]
  17. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006). [CrossRef]
  18. P. Lu, D. Grobnic, and S. J. Mihailov, "Characterization of the Birefringence in Fiber Bragg Gratings Fabricated With an Ultrafast-Infrared Laser," J. Lightwave Technol. 25, 779-786 (2007). [CrossRef]
  19. M. L. Aslund, N. Jovanovic, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, "Optical loss mechanisms in femtosecond laser written point-by-point fibre Bragg gratings," Opt. Express 16, 14248-14254 (2008),http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-14248. [CrossRef] [PubMed]
  20. C. W. Smelser, D. Grobnic, P. Lu, and S. J. Mihailov, "High temperature stable Type I IR ultrafast induced FBGS," ECOC, Brussels, Belgium, 21-25 Sept. 2008.
  21. J. Canning and S. Bandyopadhyay, "Fibre Bragg Grating Sensor for High Temperature Application," In Australian Conference on Optical Fibre Technology (ACOFT) & Opto-Electron. Commun.Conference (OECCC), Darling Harbour, Sydney, Australia, 2008. [CrossRef] [PubMed]
  22. B. Zhang and M. Kahrizi, "High-temperature resistance fiber Bragg grating temperature sensor fabrication," IEEE Sens. J. 7, 586-591 (2007). [CrossRef]
  23. Q1. J. Canning, "Fibre gratings and devices for sensors and lasers," Laser Photon. Rev. 2, 275-289 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited