OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21355–21368

Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods

Sen-ming Hsu and Hung-chun Chang  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21355-21368 (2008)
http://dx.doi.org/10.1364/OE.16.021355


View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To effectively investigate the fundamental characteristics of two-dimensional (2D) photonic crystals (PCs) with arbitrary 3D material anisotropy under the out-of-plane wave propagation, we establish a full-vectorial finite element method based eigenvalue algorithm to perform related analysis correctly. The band edge diagrams can be conveniently constructed from the band structures of varied propagation constants obtained from the algorithm, which is helpful for the analysis and design of photonic band gap (PBG) fibers. Several PCs are analyzed to demonstrate the correctness of this numerical model. Our analysis results for simple PCs are checked with others’ ones using different methods, including the transfer matrix method, the finite-difference frequency-domain (FDFD) method, and the plane-wave expansion method. And the validity of those for the most complex PC with arbitrary 3D anisotropy is supported by related liquid-crystal-filled PBG fiber mode analysis, which demonstrates the dependence of transmission properties on the PBGs, employing a full-vectorial finite element beam propagation method (FE-BPM).

© 2008 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(260.2110) Physical optics : Electromagnetic optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: October 9, 2008
Revised Manuscript: December 5, 2008
Manuscript Accepted: December 8, 2008
Published: December 10, 2008

Citation
Sen-ming Hsu and Hung-chun Chang, "Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods," Opt. Express 16, 21355-21368 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21355


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  5. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  6. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54, 7837-7842 (1996). [CrossRef]
  7. M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000). [CrossRef]
  8. L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, "An efficient finite-element method for the analysis of photonic band-gap materials," in 1999 IEEE MTT-S Dig. 4, 1703-1706 (1999).
  9. C. P. Yu and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Opt. Express 12, 1397-1408 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1397. [CrossRef] [PubMed]
  10. P. J. Chiang, C. P. Yu, and H. C. Chang, "Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method," Phys. Rev. E 75, 026703 (2007). [CrossRef]
  11. I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993). [CrossRef]
  12. Z. Y. Li, B. Y. Gu, and G. Z. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998). [CrossRef]
  13. C. Y. Liu and L. W. Chen, "Tunable band gap in a photonic crystal modulated by a nematic liquid crystal," Phys. Rev. B 72, 045133 (2005). [CrossRef]
  14. S. M. Hsu, M. M. Chen, and H. C. Chang, "Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm," Opt. Express 15, 5416-5430 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5416.
  15. G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, "Symmetry properties of two-dimensional anisotropic photonic crystals," J. Opt. Soc. Am. A 23, 2002-2013 (2006). [CrossRef]
  16. S. M. Hsu and H. C. Chang, "Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy," Opt. Express 15, 15797-15811 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-15797. [CrossRef] [PubMed]
  17. A. A. Maradudin and A. R. McGurn, "Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium," J. Modern Opt. 41, 275-284 (1994). [CrossRef]
  18. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  19. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  20. K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol. 19, 405-413 (2001). [CrossRef]
  21. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, Inc., New York, 2002).
  22. M. Koshiba and Y. Tsuji, "Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems," J. Lightwave Technol. 18, 737-743 (2000). [CrossRef]
  23. C. P. Yu and H. C. Chang, "Applications of the finite difference frequency domain mode solution method to photonic crystal structures," in Electromagnetic Theory and Applications for Photonic Crystals, K. Yasumoto, Ed. 351-400 (Marcel Dekker/CRC Press, Inc., Boca Raton, Florida, 2006).
  24. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).
  25. G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, "Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers," IEEE Photonics Technol. Lett. 20, 602-604 (2008). [CrossRef]
  26. J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, "Light guidance in new chalcogenide holey fibres from GeGaSbS glass," Mater. Res. Bull. 41, 1303-1309 (2006). [CrossRef]
  27. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited