OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21389–21400

Imaging through turbid media based on wave transport model approach

C. K. Aruldoss and A. Roberts  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21389-21400 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1644 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here a transport model is used to simulate amplitude-only imaging and intensity-based quantitative phase imaging in a turbid medium. We derive an optical transfer function for propagation through a scattering medium. We also show that, as expected, scattering leads to a degradation in the spatial resolution in both forms of imaging, while the magnitude of the phase retrieved using a solution of the transport-of-intensity equation decreases as the optical density of the scattering medium increases.

© 2008 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.4980) Imaging systems : Partial coherence in imaging
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Imaging Systems

Original Manuscript: September 4, 2008
Revised Manuscript: December 9, 2008
Manuscript Accepted: December 10, 2008
Published: December 11, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

C. K. Aruldoss and A. Roberts, "Imaging through turbid media based on wave transport model approach," Opt. Express 16, 21389-21400 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Arridge and J. C. Hebden, "Optical imaging in medicine: II. Modelling and reconstruction," Phys. Med. Biol. 42, 841-853 (1997). [CrossRef] [PubMed]
  2. R. Chandrasekhar, Radiative Transfer, (Oxford, 1950).
  3. A. Ishimaru, Wave propagation and scattering in random media Volume 1: Single scattering and transport theory (New York: Academic, 1978).
  4. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, 1976).
  5. H. W. Lewis, "Multiple scattering in an infinite medium," Phys. Rev. 78, 526-529 (1950). [CrossRef]
  6. C.-C. Cheng and M. G. Raymer, "Propagation of transverse optical coherence in random multiple scattering media," Phys. Rev. A 62, 023811 (2000). [CrossRef]
  7. A. Wax and J. E. Thomas, "Measurement of smoothed Wigner phase-space distribution for small-angle scattering in a turbid medium," J. Opt. Soc. Am. A 15, 1896-1908 (1998). [CrossRef]
  8. F. Dubois, L. Joannes and J.-C. Legros, "Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999). [CrossRef]
  9. F. Dubois, M.-L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, "Partial spatial coherence effects in digital holographic microscopy with a laser source," Appl. Opt. 43, 1131-1139 (2004). [CrossRef] [PubMed]
  10. C.-C. Cheng and M. G. Raymer, "Long range saturation of spatial decoherence in wave-field transport in random multiple scattering media," Phys. Rev. Lett. 82, 4807-4810 (1999). [CrossRef]
  11. F. Dubois, M.-L. N. Requena, and C. Minetti, "Partial spatial coherence effects in digital holographic microscopy with a laser source," Appl. Opt. 43, 1131-1139 (2004). [CrossRef] [PubMed]
  12. N. A. Beaudry and T. D. Milster, "Effects of object roughness on partially coherent image formation," Opt. Lett. 25, 454-456 (2000). [CrossRef]
  13. D. M. Marks, R. A. Stack, and D. J. Brady, "Astigmatic coherence sensor for digital imaging," Opt. Lett. 25, 1726-1728 (2000). [CrossRef]
  14. A. Momose, "Phase-sensitive imaging and phase tomography using X-ray interferometers," Opt. Express 11, 2303-2314 (2003). [CrossRef] [PubMed]
  15. M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, "Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis," Appl. Phys. Lett. 87, 19112 (2005). [CrossRef]
  16. E. D. Barone-Nugent, A. Barty and, K. A. Nugent, "Quantitative phase-amplitude microscopy I: optical microscopy," J. Microsc. 206, 194-203 (2002). [CrossRef] [PubMed]
  17. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, "Quantitative optical phase microscopy," Opt. Lett.  23, 817-819 (1998). [CrossRef]
  18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, 1995).
  19. M. J. Bastiaans, "Application of the Wigner distribution function to partially coherent light," J. Opt. Soc. Am. A 3, 1227-1238 (1986). [CrossRef]
  20. K.-H. Brenner and J. Ojeda-Castaneda, "Ambiguity function and Wigner distribution function applied to partially coherent imagery," Opt. Acta 31, 213-223 (1984). [CrossRef]
  21. M. J. Bastiaans and T. Alieva, "Wigner distribution moments in fractional fourier transform systems," J. Opt. Soc. Am. A 19, 1763-1773 (2002). [CrossRef]
  22. C. K. Aruldoss, N. M. Dragomir, and A. Roberts, "Non-interferometric characterization of partially coherent scalar wavefields and application to scattered light," J. Opt. Soc. Am. A 24, 3189-3197 (2007). [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]
  24. M. R. Teague, "Deterministic phase retrieval: a Green’s function solution," J. Opt. Soc. Am. 731434-1441 (1983). [CrossRef]
  25. T. E. Gureyev, A. Roberts, and K. A. Nugent, "Partially coherent fields, the transport-of-intensity equation, and phase uniqueness," J. Opt. Soc. Am. A 12, 1942-1946 (1995). [CrossRef]
  26. D. Paganin and K. A. Nugent, "Non-interferometric phase imaging using partially coherent light," Phys. Rev. Lett. 80, 2586-2589 (1998). [CrossRef]
  27. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, "Quantitative phase-amplitude microscopy III. The effects of noise," J. Microsc. 214, 51-61 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited