OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21462–21475

Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity

Yun-Feng Xiao, Şahin Kaya Özdemir, Venkat Gaddam, Chun-Hua Dong, Nobuyuki Imoto, and Lan Yang  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21462-21475 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate a quantum nondemolition (QND) measurement with optical Kerr effect in an ultra-high-Q microtoroidal system. The analytical and numerical results predict that the present QND measurement scheme possesses a high sensitivity, which allows for detecting few photons or even single photons. Ultra-high-Q toroidal microcavity may provide a novel experimental platform to study quantum physics with nonlinear optics at low light levels.

© 2008 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.1450) Nonlinear optics : Bistability
(190.3270) Nonlinear optics : Kerr effect
(270.0270) Quantum optics : Quantum optics
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Quantum Optics

Original Manuscript: July 29, 2008
Revised Manuscript: December 8, 2008
Manuscript Accepted: December 11, 2008
Published: December 15, 2008

Yun-Feng Xiao, Sahin K. Özdemir, Venkat Gaddam, Chun-Hua Dong, Nobuyuki Imoto, and Lan Yang, "Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity," Opt. Express 16, 21462-21475 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Caves, K, S. Thorne, R. W. P. Drever, M. Zimmermann, and V. D. Sandberg, "On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle," Rev. Mod. Phys. 52, 341-392 (1980). [CrossRef]
  2. F. König, B. Buchler, T. Rechtenwald, G. Leuchs, and S. Sizmann, "Soliton backaction-evading measurement using spectral filtering," Phys. Rev. A 66, 043810 (2002). [CrossRef]
  3. P. Grangier, J. -A. Levenson, and J.-P. Poizat, "Quantum nondemolition measurement in optics," Nature 396, 537-542 (1998). [CrossRef]
  4. J. F. Roch, G. Roger, P. Grangier, J. M. Courty, and S. Reynaud, "Quantum non-demolition measurements in optics: a review and some recent experimental results," Appl. Phys. B 55, 291-297 (1992). [CrossRef]
  5. G. Leuchs, C. Silberhorn,K¨onig, P. K.  Lam, A. Sizmann, and N. Korolkova, in Quantum Information Theory with Continous Variables edited by S. L. Braunstein and A. K. Pati (Kluwer Academic, Dordrecht, 2002).
  6. W. J. Munro, K. Nemoto, and T. P. Spiller, "Weak nonlinearities: a new route to optical quantum computation," New J. Phys. 7, 137 (2005). [CrossRef]
  7. Q1. K, S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg, "Quantum nondemolition measurement of harmonic oscillators," Phys. Rev. Lett. 40, 667-671 (1978). [CrossRef]
  8. V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, "Quantum nondemolition measurements," Science 209, 547-557 (1980). [CrossRef] [PubMed]
  9. N. Imoto, H. A. Haus, and Y. Yamamoto, "Quantum nondemolition measurement of the photon number via the optical Kerr effect," Phys. Rev. A 32, 2287-2292 (1985). [CrossRef] [PubMed]
  10. P. Alsing, G. J. Milburn, D. F. Walls, "Quantum nondemolition measurements in optical cavities," Phys. Rev. A 37, 2970-2978 (1988). [CrossRef] [PubMed]
  11. H. A. Haus and F. X. Kärtner, "Optical quantum nondemolition measurement and the Copenhagen Interpretation," Phys. Rev. A. 53, 3785-3791 (1986). [CrossRef]
  12. V. B. Braginsky and F. Ya. Khalili, "Quantum nondemolition measurements: the route from toys to tools," Rev. Mod. Phys. 68, 1-11 (1996). [CrossRef]
  13. J. M. Courty, S. Sp¨alter, F. Krönig, A. Sizmann, and G. Leuchs, "Noise-free quantum-nondemolition measurement using optical solitons," Phys. Rev. A 58, 1501-1508 (1998). [CrossRef]
  14. N. Imoto and S. Saito, "Quantum nondemolition measurement of photon number in a lossy optical Kerr medium", Phys. Rev. A 39, 675-682 (1989). [CrossRef] [PubMed]
  15. M. J. Holland, M. J. Collett, D. F. Walls, and M. D. Levenson, "Nonideal quantum nondemolition measurements," Phys. Rev. A. 42, 2995-3005 (1990). [CrossRef] [PubMed]
  16. P. Grangier, J.M. Courty, and S. Reynaud, "Characterization of nonideal quantum nondemolition measurements," Opt. Commun. 89, 99-106 (1992). [CrossRef]
  17. M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, "Quantum nondemolition detection of optical quadrature amplitudes," Phys. Rev. Lett. 57, 2473-2476 (1986). [CrossRef] [PubMed]
  18. N. Imoto, S. Watkins, and Y. Sasaki, "A nonlinear optical-fiber interferometer for nondemolitional measurement of photon number," Opt. Comm. 61, 159-163 (1987). [CrossRef]
  19. S. R. Friberg, S. Machida, and Y. Yamamoto, "Quantum nondemolition measurement of the photon number of an optical soliton," Phys. Rev. Lett. 69, 3165-3168 (1992). [CrossRef] [PubMed]
  20. J. P. Poizat, P. Grangier, "Experimental realization of a quantum optical tap," Phys. Rev. Lett. 70, 271-274 (1993). [CrossRef] [PubMed]
  21. S. F. Pereira, Z. Y. Ou, and H. J. Kimble, "Back-action evading measurements for quantum non-demolition detection and quantum optical tapping," Phys. Rev. Lett. 72, 214-217 (1994). [CrossRef] [PubMed]
  22. K. Bencheikh, J. A. Levenson, P. Grangier, and O. Lopez, "Quantum non-demolition demonstration via repeated back-action evading measurements," Phys. Rev. Lett. 75, 3422-3425 (1995). [CrossRef] [PubMed]
  23. R. Bruckmeier, H. Hansen, and S. Schiller, "Repeated quantum non-demolition measurements of continuous optical waves," Phys. Rev. Lett. 79, 1463-1466 (1997). [CrossRef]
  24. K. Bencheick, C. Simonneau, and J. A. Levenson, "Cascaded amplifying quantum optical taps: A robust noiseless optical bus," Phys. Rev. Lett. 78, 34-37 (1997). [CrossRef]
  25. B. C. Buchler, P. K. Lam, H. -A. Bachor, U. L. Andersen, and T. C. Ralph, "Squeezing more from a quantum nondemolition measurement," Phys. Rev. A. 65, 011803(R) (2001). [CrossRef]
  26. J.-F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J.-Ph. Poizat, and Ph. Grangier, "Quantum non-demolition measurements using cold trapped atoms," Phys. Rev. Lett. 78, 634-637 (1997). [CrossRef]
  27. A. Kuzmich, L. Mandel, and N. P. Bigelow, "Generation of spin squeezing via continous quantum nondemolition measurement," Phys. Rev. Lett. 85, 1594-1597 (2000). [CrossRef] [PubMed]
  28. S. Peil, and G. Gabrielse, "Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states," Phys. Rev. Lett. 83, 1287-1290 (1999). [CrossRef]
  29. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, "Seeing a single photon without destroying it," Nature 400, 239-242 (1999). [CrossRef]
  30. C. Guerlin, J. Bernu, S. Delglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J. M. Raimond, and S. Haroche, "Progressive field-state collapse and quantum non-demolition photon counting," Nature 448, 889-893 (2007). [CrossRef] [PubMed]
  31. G. J. Pryde, J. L. O’Brien, A. G. White, S. D. Bartlett, and T. C. Ralph, "Measuring a photonic qubit without destroying it," Phys. Rev. Lett. 92, 190402 (2004). [CrossRef] [PubMed]
  32. Q2. I. Fushman and J. Vučković, "Analysis of a quantum dondemolition measurement scheme based on Kerr nonlinearity in photonic crystal waveguides," Opt. Express 15, 5559-5571 (2007). [CrossRef] [PubMed]
  33. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity," Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  34. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005). [CrossRef]
  35. M. Yamane and Y. Asahara, Glass for Photonics (Cambridge University Press, Cambridge, 2000). [CrossRef]
  36. S. X. Qian and R. K. Chang, "Multiorder stokes emission from micrometer-size droplets," Phys. Rev. Lett. 56, 926-929 (1986). [CrossRef] [PubMed]
  37. A. J. Campillo, J. D. Eversole, and H. B. Lin, "Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets," Phys. Rev. Lett. 67, 437-440 (1991). [CrossRef] [PubMed]
  38. F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, "Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium," Eur. Phys. J. D 1, 235-238 (1998).
  39. S. Uetake, M. Katsuragawa, M. Suzuki, and K. Hakuta, "Stimulated raman scattering in a liquid-hydrogen droplet," Phys. Rev. A 61, 011803 (2000). [CrossRef]
  40. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415, 621 (2002). [CrossRef] [PubMed]
  41. Q3. T. Carmon and K. J. Vahala, "Visible continuous emission from a silica microphonic device by third-harmonic generation," Nature Physics 3, 430-435 (2007). [CrossRef]
  42. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  43. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004). [CrossRef]
  44. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Opt. Express 12, 4742-4750 (2004). [CrossRef] [PubMed]
  45. D. F. Walls and G. J. Milburn, Quantum Optics(Springer-Verlag, Berlin Heidelberg, 1994)
  46. C.W. Gardiner and M. J. Collett, "Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation," Phys. Rev. A 31, 3761-3774 (1985). [CrossRef] [PubMed]
  47. S. K. Ozdemir, A. Miranowicz, M. Koashi, and N. Imoto, "Pulse-mode quantum projection synthesis: Effects of mode-mismatch on optical state truncation and preparation," Phys. Rev. A 66, 053809 (2002). [CrossRef]
  48. Mani Hossein-Zadeh, and Kerry J. Vahala "Free ultra-high-Q microtoroid: a tool for designing photonic devices," Opt. Express 15, 166-175 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited