OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21476–21482

Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI

Junfeng Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21476-21482 (2008)
http://dx.doi.org/10.1364/OE.16.021476


View Full Text Article

Enhanced HTML    Acrobat PDF (2981 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A cross-ring (CR-) Mach-Zehnder interferometer (MZI) interleaver structure has been proposed and fabricated. It uses an ‘8’ shaped cross-ring resonator to replace the conventional circular ring resonator. Thus, the new structure can have the function of add-signal. Furthermore, a thermo-optical fine tuning has been applied, which improves the crosstalk performance from ~-10 dB to ~-20 dB with 9 V applied on the heater of the 3-dB directional coupler.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: August 26, 2008
Revised Manuscript: October 18, 2008
Manuscript Accepted: October 20, 2008
Published: December 15, 2008

Citation
Junfeng Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI," Opt. Express 16, 21476-21482 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21476


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," OFC’ 03 Interleaver Workshop, pp. 1-9, http://www.neophotonics.com/down/2.pdf.
  2. H. Arai, H. Nonen, K. Ohira, and T. Chiba, "PLC wavelength splitter for dense WDM transmission system," Hitachi Cable Review 21, 11-16 (2002), http://www.hitachi-cable.co.jp/ICSFiles/afieldfile/2005/11/29/2_review03.pdf.
  3. S. G. Heris, A. Zarifkar, K. Abedi, and M. K. M. Farshi, "Interleavers/deinterleavers based on Michelson- Gires-Tournois interferometers with different structures," in Proc. Semicond. Electron., Kuala Lumpur, Malaysia (ICSE 2004) 7-9, 573-576 (2004).
  4. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis -A Signal Processing Approach (Wiley, New York, 1999).
  5. B. B. Dingel and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system application," Opt. Lett. 23, 1099-1101 (1998). [CrossRef]
  6. C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003). [CrossRef]
  7. J. Zhang, L. R. Liu, and Y. Zhou, "Novel and simple approach for designing lattice form interleaver filter," Opt. Express 11, 2217-2224 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2217. [CrossRef] [PubMed]
  8. C.-W. Lee, R. B. Wang, P. C. Yeh, and W.-H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4636. [CrossRef] [PubMed]
  9. Y. Zhang, Q. J. Wang, and T. C. Soh, "Optical interleaver," US Patent #2005/0271323A1.
  10. Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005). [CrossRef]
  11. Q. J. Wang, Y. Zhang, and Y. C. Soh, "All-fiber 3 x 3 interleaver design with flat-top passband," IEEE Photon. Technol. Lett. 16, 168-170 (2004). [CrossRef]
  12. K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13, 73-82 (1995). [CrossRef]
  13. K. Jinguji, "Synthesis of coherent two-port optical delay-line circuit with ring waveguides," J. Lightwave Technol. 14, 1882-1884 (1996). [CrossRef]
  14. M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002). [CrossRef]
  15. S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, "Novel architecture for design of planar lightwave interleavers," J. Lightwave Technol. 23, 1435-1440 (2005). [CrossRef]
  16. C. G. H. Roeloffzen, R. M. de Ridder, G. Sengo, K. Wörhoff, and A. Driessen "Passband flattened interleaver using a Mach-Zehnder interferometer with ring resonator fabricated in SiON waveguide technology," in Proceedings Symposium of IEEE/LEOS (IEEE, 2002) 32-35, http://leosbenelux.org/symp02/s02p10.pdf.
  17. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. H. Hilderink, P. V. Lambeck, and A. Driessen, "Tolerance and application of polarization independent waveguide for communication devices," in Proceedings Symposium of IEEE/LEOS (IEEE, 2004) 107-110, http://leosbenelux.org/symp04/s04p107.pdf.
  18. Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007). [CrossRef]
  19. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator," Opt. Express 16,8359-8365 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8359. [CrossRef] [PubMed]
  20. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Proposed silicon wire interleaver structure," Opt. Express 16,7849-7859 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7849. [CrossRef] [PubMed]
  21. J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, "Integrated interleaves technology enables high performance in DWDM systems," in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410-1420, (2001), http://www.wavesplitter.com/news/articles_pdf/NFOEC01Interleaver.pdf.
  22. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides," Opt. Lett. 32,2801-2803 (2007) [CrossRef] [PubMed]
  23. H. Yamda, T. Chu, S. Ishida, and Y. Arakawa, "Si Photonic wire waveguide devices," IEEE J. Sel. Topics Quantum Electron. 12, 1371-1379 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited