OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21626–21640

Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors

Nikhil Ganesh, Ian D. Block, Patrick C. Mathias, Wei Zhang, Edmond Chow, Viktor Malyarchuk, and Brian T. Cunningham  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21626-21640 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficient recovery of light emitted by fluorescent molecules by employing photonic structures can result in high signal-to-noise ratio detection for biological applications including DNA microarrays, fluorescence microscopy and single molecule detection. By employing a model system comprised of colloidal quantum dots, we consider the physical basis of the extraction effect as provided by photonic crystals. Devices with different lattice symmetry are fabricated ensuring spectral and spatial coupling of quantum dot emission with leaky eigenmodes and the emission characteristics are studied using angle-resolved and angle-integrated measurements. Comparison with numerical calculations and lifetime measurements reveals that the enhancement occurs via resonant redirection of the emitted radiation. Comparison of various lattices reveals differences in the enhancement factor with a maximum enhancement factor approaching 220. We also demonstrate the first enhanced extraction biosensor that allows for over 20-fold enhancement of the fluorescence signal in detection of the cytokine TNF-α by a fluorescence sandwich immunoassay.

© 2008 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 7, 2008
Revised Manuscript: December 11, 2008
Manuscript Accepted: December 11, 2008
Published: December 15, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Nikhil Ganesh, Ian D. Block, Patrick C. Mathias, Wei Zhang, Edmond Chow, Viktor Malyarchuk, and Brian T. Cunningham, "Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors," Opt. Express 16, 21626-21640 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, "Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode," Appl. Phys. Lett. 78, 563-565 (2001). [CrossRef]
  2. J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000). [CrossRef]
  3. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett.161102 (2006). [CrossRef]
  4. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Appl. Phys. Lett. 84, 855 (2004). [CrossRef]
  5. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, "Spontaneous emission extraction and purcell enhancement from thin-film 2-D photonic crystals," J. Lightwave Technol. 17, 2096-2112 (1999). [CrossRef]
  6. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Virjen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75, 1036-1038 (1999). [CrossRef]
  7. Rsoft DiffractMOD, "RSoft Design Group."
  8. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 392-402 (1902).
  9. L. Rayleigh, "On the dynamical theory of gratings," Proc. R. Soc. London Ser. A 79, 399-416 (1907). [CrossRef]
  10. A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965). [CrossRef]
  11. E. Popov, L. Mashev, and D. Maystre, "Theoretical study of the anomalies of coated dielectric gratings," Opt. Acta 33, 607-619 (1986). [CrossRef]
  12. H. L. Bertoni, L. H. S. Cheo, and T. Tamir, "Frequency selective reflection and transmission by a periodic dielectric layer," IEEE Trans. Antennas Propag. 37, 78-83 (1989). [CrossRef]
  13. S. S. Wang, R. Magnusson, and J. S. Bagby, "Guided-mode resonances in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 7, 1470-1474 (1990). [CrossRef]
  14. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  15. B. T. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Act. B 81, 316-328 (2002). [CrossRef]
  16. B.-S. Choi, Y. Kanamori, and K. Hane, "Phase sensitive photodiode based on guided resonant absorption," Appl. Phys. Lett. 90, 241114 (2007). [CrossRef]
  17. T. Kobayashi, Y. Kanamori, and K. Hane, "Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure," Appl. Phys. Lett. 87, 151106 (2005). [CrossRef]
  18. A. Rosenberg, M. Carter, J. Case, M. Kim, R. Holm, R. Henry, C. Eddy, V. Shamamian, K. Bussmann, S. Shi, and D. Prather, "Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum," Opt. Express 13, 6564-6571 (2005). [CrossRef] [PubMed]
  19. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993). [CrossRef] [PubMed]
  20. R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, "Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films," Proc. SPIE 5225, 20 (2003). [CrossRef]
  21. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997). [CrossRef]
  22. S. Boonruang, A. Greenwell, and M. G. Moharam, "Multiline two-dimensional guided-mode resonant filters," Appl. Opt. 45, 5740-5747 (2006). [CrossRef] [PubMed]
  23. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev 69, 681 (1946).
  24. A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, "Observation of the Purcell effect in high-index-contrast micropillars," Appl. Phys. Lett. 90, 191911 (2007). [CrossRef]
  25. I. C. Robin, R. Andre, A. Balocchi, S. Carayon, S. Moehl, J. M. Gerard, and L. Ferlazzo, "Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars," Appl. Phys. Lett. 87, 233114 (2005). [CrossRef]
  26. P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430 (654-657) (2004). [CrossRef] [PubMed]
  27. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited