OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21671–21681

Polarization conversion through collective surface plasmons in metallic nanorod arrays

René Kullock, William R. Hendren, Andreas Hille, Stefan Grafström, Paul R. Evans, Robert J. Pollard, Ron Atkinson, and Lukas M. Eng  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21671-21681 (2008)
http://dx.doi.org/10.1364/OE.16.021671


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For two-dimensional (2D) arrays of metallic nanorods arranged perpendicular to a substrate several methods have been proposed to determine the electromagnetic near-field distribution and the surface plasmon resonances, but an analytical approach to explain all optical features on the nanometer length scale has been missing to date. To fill this gap, we demonstrate here that the field distribution in such arrays can be understood on the basis of surface plasmon polaritons (SPPs) that propagate along the nanorods and form standing waves. Notably, SPPs couple laterally through their optical near fields, giving rise to collective surface plasmon (CSP) effects. Using the dispersion relation of such CSPs, we deduce the condition of standing-wave formation, which enables us to successfully predict several features, such as eigenmodes and resonances. As one such property and potential application, we show both theoretically and in an experiment that CSP propagation allows for polarization conversion and optical filtering in 2D nanorod arrays. Hence, these arrays are promising candidates for manipulating the light polarization on the nanometer length scale.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 29, 2008
Revised Manuscript: November 17, 2008
Manuscript Accepted: November 21, 2008
Published: December 16, 2008

Citation
René Kullock, William R. Hendren, Andreas Hille, Stefan Grafström, Paul R. Evans, Robert J. Pollard, Ron Atkinson, and Lukas M. Eng, "Polarization conversion through collective surface plasmons in metallic nanorod arrays," Opt. Express 16, 21671-21681 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Stewart, C. Anderton, L. Thompson, J. Maria, S. Gray, J. Rogers, and R. Nuzzo, "Nanostructured plasmonic sensors," Chem. Rev. 108, 494-521 (2008). [CrossRef] [PubMed]
  2. K. Aslan, J. R. Lakowicz, and C. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005). [CrossRef] [PubMed]
  3. H. Haick, "Chemical sensors based on molecularly modified metallic nanoparticles," J. Phys. D 40, 7173-7186 (2007). [CrossRef]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  5. A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpan, "Optically isotropic negative index of refraction metamaterial," Phys. Status Solidi B 245, 992-997 (2008). [CrossRef]
  6. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nat. Photon. 438, 335-338 (2005).
  7. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, "Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal," Appl. Phys. Lett. 91, 043101-1-3 (2007). [CrossRef]
  8. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, "Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles," J. Appl. Phys. 101, 104309-1-7 (2007). [CrossRef]
  9. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, "Surface-plasmonenhanced light-emitting diodes," Adv. Mater. 20, 1253-1257 (2008). [CrossRef]
  10. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403-1-7 (2005). [CrossRef]
  11. H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": Plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005). [CrossRef]
  12. R.-L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X.-W. Qi, L.-T. Li, and S. Buddhudu, "Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane," J. Phys. Chem. B 108, 16713-16716 (2004). [CrossRef]
  13. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, "Anisotropic optical properties of arrays of gold nanorods embedded in alumina," Phys. Rev. B 73, 235402-1-8 (2006). [CrossRef]
  14. P. Evans, R. Kullock, W. Hendren, R. Atkinson, R. Pollard, and L. M. Eng, "Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays." Adv. Funct. Mater. 18, 1075-1079 (2008). [CrossRef]
  15. B. McMillan, L. Berlouis, F. Cruickshank, and P. Brevet, "Reflectance and electrolyte electroreflectance from gold nanorod arrays embedded in a porous alumina matrix," J. Electroanal. Chem. 599, 177-182 (2007). [CrossRef]
  16. S. Lee, Z. Guan, H. Xu, and M. Moskovits, "Surface-enhanced raman spectroscopy and nanogeometry: The plasmonic origin of SERS," J. Phys. Chem. C 111, 17985-17988 (2007). [CrossRef]
  17. G. Wurtz, P. Evans, W. Hendren, R. Atkinson, W. Dickson, R. Pollard, W. Harrison, C. Bower, and A. Zayats, "Molecular plasmonics with tunable exciton-plasmon coupling strength in j-aggregate hybridized Au nanorod assemblies," Nano. Lett. 7, 1297-1303 (2007). [CrossRef] [PubMed]
  18. S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999). [CrossRef]
  19. G. W. Bryant, F. J. G. de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas." Nano. Lett. 8, 631-636 (2008). [CrossRef] [PubMed]
  20. W. Dickson, P. R. Evans, G. A. Wurtz, W. Hendren, R. Atkinson, R. J. Pollard, and A. V. Zayats, "Towards nonlinear plasmonic devices based on metallic nanorods." J. Microsc. 229, 415-420 (2008). [CrossRef] [PubMed]
  21. G. Mie, "Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen," Ann. Phys. 25, 377-445 (1908). [CrossRef]
  22. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, "Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime," Opt. Express 16, 7460-7470 (2008). [CrossRef] [PubMed]
  23. C. Hafner, MaX-1 A Visual Electromagnetics Platform for PCs. (John Wiley & Sons, Chichester, 1998).
  24. C. Hafner, Post-modern Electromagnetics: Using Intelligent MaXwell Solvers. (John Wiley & Sons, Chichester, 1999).
  25. P. Johnson and R. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  26. C. G. Poulton,M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. S. Russell, "Numerical study of guided modes in arrays of metallic nanowires," Opt. Lett. 32, 1647-1649 (2007). [CrossRef] [PubMed]
  27. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802-1-4 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited