OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21692–21707

Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers

Avi Zadok, Elad Zilka, Avishay Eyal, Luc Thévenaz, and Moshe Tur  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21692-21707 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization properties of stimulated Brillouin scattering (SBS) amplification or attenuation in standard single-mode fibers are examined through vectorial analysis, simulation and experiment. Vector propagation equations for the signal wave, incorporating SBS and birefringence, are derived and analyzed in both the Jones and Stokes spaces. The analysis shows that in the undepleted pump regime, the fiber may be regarded as a polarization-dependent gain (or loss) medium, having two orthogonal input SOPs, and corresponding two orthogonal output SOPs, for the signal, which, respectively, provide the signal with maximum and minimum SBS amplification (or attenuation). Under high Brillouin gain conditions and excluding zero-probability cases, the output SOP of arbitrarily polarized input signals, would tend to converge towards that of maximum SBS gain. In the case of high SBS attenuation the output SOP of an arbitrarily polarized signal would approach the output SOP corresponding to minimum attenuation. It is found that for a wide range of practical pump powers (≤ 100mW) and for sufficiently long fibers with typical SBS and birefringence parameters, the signal aligned for maximum SBS interaction will enter/emerge from the fiber with its electric field closely tracing the same ellipse in space as that of the pump at the corresponding side of the fiber, albeit with the opposite sense of rotation. The analytic predictions are experimentally demonstrated for both Stokes (amplification) and anti-Stokes (attenuation) signals.

© 2008 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 9, 2008
Revised Manuscript: November 18, 2008
Manuscript Accepted: December 12, 2008
Published: December 16, 2008

Avi Zadok, Elad Zilka, Avishay Eyal, Luc Thévenaz, and Moshe Tur, "Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers," Opt. Express 16, 21692-21707 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Horiguchi, T. Kurashima, and M. Tateda, "A technique to measure distributed strain in optical fibers," IEEE Photon. Technol. Lett. 2, 352-354 (1990). [CrossRef]
  2. M. Nikles, L. Thévenaz, and P. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997). [CrossRef]
  3. X. Bao, D. J. Webb, and D. A. Jackson, "32-km distributed temperature sensor using Brillouin loss in optical fiber," Opt. Lett. 18, 1561-1563 (1993). [CrossRef] [PubMed]
  4. J. C. Yong, L. Thévenaz, and B. Y. Kim, "Brillouin fiber laser pumped by a DFB laser diode," J. Lightwave Technol. 12, 546-554 (2003). [CrossRef]
  5. A. Loayssa, D. Benito, and M. J. Grade, "Optical carrier-suppression technique with a Brillouin-erbium fiber laser," Opt. Lett. 25, 197-199 (2000). [CrossRef]
  6. Y. Shen, X. Zhang, and K. Chen, "Optical single side-band modulation of 11 GHz RoF system using stimulated Brillouin scattering," IEEE Photon. Technol. Lett. 17, 1277-1279 (2005). [CrossRef]
  7. A. Zadok, A. Eyal, and M. Tur, "GHz-wide optically reconfigurable filters using stimulated Brillouin scattering," J. Lightwave Technol. 25, 2168-2174 (2007). [CrossRef]
  8. A. Loayssa, and F. J. Lahoz, "Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single side-band modulation," IEEE Photon. Technol. Lett. 18, 208-210 (2006). [CrossRef]
  9. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006). [CrossRef]
  10. Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored light in an optical fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007). [CrossRef] [PubMed]
  11. M. González-Herráez, K.-Y. Song, and L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113 (2005). [CrossRef]
  12. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005). [CrossRef] [PubMed]
  13. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Technol. 25, 201-206 (2007). [CrossRef]
  14. M. González-Herráez, K.-Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006). [CrossRef] [PubMed]
  15. K. Y. Song, M. Gonzalez Herraez, and L. Thévenaz, "Observation of pulse delay and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005). [CrossRef] [PubMed]
  16. A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Express 14, 8498-8505 (2006). [CrossRef] [PubMed]
  17. R. W. Boyd, Nonlinear optics, (San Diego, CA: Academic Press, 2003) Chap. 9, pp. 409-427. [CrossRef]
  18. A. Yariv, Optoelectronics, (Orlando FL: Saunders College Publishing, 4th Edition, 1991), Chap. 19, pp. 670-678.
  19. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, "Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber," J. Opt. Soc. Am. B 22, 2378-2384 (2005). [CrossRef]
  20. T. Horiguchi, M. Tateda, M. Shibata, and Y. Azuma, "Brillouin gain variation due to a polarization-state change of the pump or Stokes field in standard single mode fibers," Opt. Lett. 14, 329-331 (1989). [CrossRef] [PubMed]
  21. M. O. van Deventer, and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single mode fibers," J. Lightwave Technol. 12, 585-590 (1994). [CrossRef]
  22. In [21], the pump and probe SOPs are defined in two different reference frames, corresponding to opposite directions of propagation. In this work, as well as in most of the literature on polarization [23,24], a single reference frame is used. Therefore, we defer the mathematical description of the conditions for maximum/minimum SBS gain to Section 2.
  23. R. C. Jones, "A new calculus for the treatment of optical system," J. Opt. Soc. Am. 37, 107-110, (1947). [CrossRef]
  24. E. Collett, Ed., Polarized light fundamentals and applications. (New York: Marcel Dekker, 1993).
  25. L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, "All-optical polarization control through Brillouin amplification," paper OML7 in OFC/NFOEC 2008, San Diego, Ca, (2008).
  26. J. P. Gordon and H. Kogelnik, "PMD fundamentals: polarization mode dispersion in optical fibers", P. Natl. Acad. Sci. USA 97, 4541-4550, (2000). [CrossRef]
  27. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. of Quantum Electron. 15, 1157-1160, (1979). [CrossRef]
  28. F. Corsi, A. Galtarossa, and L. Palmieri, "Analytical treatment of polarization mode dispersion in single mode fibers by means of the backscattered signal," J. Opt. Soc. Am. A 16, 574-583, (1999). [CrossRef]
  29. M. Brodsky, N. J. Frigo, ad M. Tur, "Polarization mode dispersion," chapter 17 in Optical Fiber Telecommunications V-A, Ed. I. P. Kaminow, T. Li and A. E. Willner, (Academic Press, 2008). [CrossRef]
  30. A. Loayssa, D. Benito, and M. J. Grade, "High resolution measurement of stimulated Brillouin scattering spectra in single-mode fibers," IEE Proc. Optoelectron. 148, 143-148, (2001). [CrossRef]
  31. A. Eyal, D. Kuperman, O. Dimenstein, and M. Tur, "Polarization dependence of the intensity modulation transfer function of an optical system with PMD and PDL," IEEE Photon. Technol. Lett. 14, 1515-1517 (2002). [CrossRef]
  32. S. Pitois, J. Fatome, and G. Millot, "Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths," Opt. Express 16, 6646-6651 (2008). [CrossRef] [PubMed]
  33. A. Küng, L. Thévenaz, and P. A. Robert, "Polarization analysis of Brillouin scattering in a circularly birefringent fiber ring resonator," J. Lightwave. Technol. 15, 977-982 (1997). [CrossRef]
  34. S. Randoux, and J. Zemmouri, "Polarization dynamics of a Brillouin fiber ring laser," Phys. Rev. A 59,1644-1653 (1999). [CrossRef]
  35. L. Thévenaz, S. Foaleng Mafang, and M. Nikles, "Fast measurement of local PMD with high spatial resolution using stimulated Brillouin scattering," paper 10.1.2 in ECOC 2007, Berlin, Germany, (2007).
  36. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," J. Lightwave Technol. 13, 1340-1348 (1995). [CrossRef]
  37. S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, "Zero-gain slow and fast light propagation in an optical fiber," Opt. Express 14, 10684-10692 (2006). [CrossRef] [PubMed]
  38. D. R. Walker, M. Bashkanski, A. Gulian, F. K. Fatemi, and M. Steiner, "Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror," to be published in J. Opt. Soc. Am. B 25, (2008).
  39. A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, "Polarized Brillouin amplification in randomly birefringent and unidrectionally spun fibers," IEEE Photon Technol. Lett 20, 1420-1422 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited