OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21738–21745

NIR femtosecond phase control of resonance-mediated generation of coherent UV radiation

Leonid Rybak, Lev Chuntonov, Andrey Gandman, Naser Shakour, and Zohar Amitay  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21738-21745 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Shaped near-infrared (NIR) femtosecond pulses are used for the first time to control the generation of coherent deep-ultraviolet (UV) radiation in an atomic resonance-mediated (2+1) three-photon excitation. The broadband excitation coherently involves pathways that are on resonance with the intermediate resonance state as well as pathways that are near resonance with it. Experimental and theoretical results are presented for phase controlling the total emitted UV yield in atomic sodium. Depending on the NIR spectrum of the excitation pulse, the coherent UV emission is either predominantly due to a single excited real state that is accessed resonantly or due to a manifold of virtual states. The former leads to a narrowband UV emission, while the latter leads to a broadband UV radiation. Basic phase control is exercised in both cases, with excellent agreement between experiments and calculations. The tunability is over an order-of-magnitude UV-yield range.

© 2008 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Atomic and Molecular Physics

Original Manuscript: November 3, 2008
Revised Manuscript: December 4, 2008
Manuscript Accepted: December 7, 2008
Published: December 16, 2008

Leonid Rybak, Lev Chuntonov, Andrey Gandman, Naser Shakour, and Zohar Amitay, "NIR femtosecond phase control of resonance-mediated generation of coherent UV radiation," Opt. Express 16, 21738-21745 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Tannor, R. Kosloff, and S. A. Rice, "Coherent pulse sequence induced control of selectivity of reactions: Exact quantum mechanical calculations," J. Chem. Phys. 85, 5805 (1986). [CrossRef]
  2. M. Shapiro and P. Brumer, Principles of the quantum control of molecular processes (Wiley, New Jersey, 2003).
  3. W. S. Warren, H. Rabitz, and D. Mahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581 (1993). [CrossRef] [PubMed]
  4. R. J. Gordon and S. A. Rice, "Active control of the dynamics of atoms and molecules," Annu. Rev. Phys. Chem. 48, 601 (1997). [CrossRef] [PubMed]
  5. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?," Science 288, 824 (2000). [CrossRef] [PubMed]
  6. T. Brixner and G. Gerber, "Quantum Control of Gas-Phase and Liquid-Phase Femtochemistry," ChemPhysChem 4, 418 (2003). [CrossRef] [PubMed]
  7. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, "Femtosecond quantum control of molecular dynamics in the condensed phase," Phys. Chem. Chem. Phys. 9, 2470 (2007). [CrossRef] [PubMed]
  8. M. Dantus and V. V. Lozovoy, "Experimental coherent laser control of physicochemical processes," Chem. Rev. 104, 1813 (2004). [CrossRef] [PubMed]
  9. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929 (2000). [CrossRef]
  10. T. Brixner and G. Gerber, "Femtosecond polarization pulse shaping," Opt. Lett. 26, 557 (2001). [CrossRef]
  11. D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature (London) 396, 239 (1998). [CrossRef]
  12. D. Meshulach and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A 60, 1287 (1999). [CrossRef]
  13. A. Prakelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, "Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences," Phys. Rev. A 70, 063407 (2004). [CrossRef]
  14. N. Dudovich, B. Dayan, S. M. Gallagher Faeder, and Y. Silberberg, "Transform-limited pulses are not optimal for resonant multiphoton transitions," Phys. Rev. Lett. 86, 47 (2001). [CrossRef] [PubMed]
  15. B. Chatel, J. Degert, S. Stock, and B. Girard, "Competition between sequential and direct paths in a two-photon transition," Phys. Rev. A 68, 041402(R) (2003). [CrossRef]
  16. L. Chuntonov, L. Rybak, A. Gandman, and Z. Amitay, "Enhancement of intermediate-field two-photon absorption by rationally shaped femtosecond pulses," Phys. Rev. A 77, 021403(R) (2008). [CrossRef]
  17. L. Chuntonov, L. Rybak, A. Gandman, and Z. Amitay, "Frequency-domain coherent control of femtosecond two-photon absorption: intermediate-field versus weak-field regime," J. Phys. B 41, 035504 (2008). [CrossRef]
  18. A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, "Coherent phase control of resonance-mediated (2+1) three-photon absorption," Phys. Rev. A 75, 031401(R) (2007). [CrossRef]
  19. A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, "Pulse-bandwidth dependence of coherent phase control of resonance-mediated (2+1) three-photon absorption," Phys. Rev. A 76, 053419 (2007). [CrossRef]
  20. Z. Amitay, A. Gandman, L. Chuntonov, and L. Rybak, "Multichannel selective femtosecond coherent control based on symmetry properties," Phys. Rev. Lett. 100, 193002 (2008). [CrossRef] [PubMed]
  21. N. T. Form, B. J. Whitaker, and C. Meier, "Enhancing the probability of three-photon absorption in iodine through pulse shaping," J. Phys. B 41, 074011 (2008). [CrossRef]
  22. H. U. Stauffer, J. B. Ballard, Z. Amitay, and S. R. Leone, "Simultaneous phase control of Li2 wave packets in two electronic states," J. Chem. Phys. 116, 946 (2002). [CrossRef]
  23. X. Dai, E. W. Lerch, and S. R. Leone, "Coherent control through near-resonant Raman transitions," Phys. Rev. A 73, 023404 (2006). [CrossRef]
  24. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature (London) 418, 512 (2002). [CrossRef]
  25. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-stokes raman signals from broadband pulses," Phys. Rev. Lett. 88, 063004 (2002). [CrossRef] [PubMed]
  26. S. H. Lim, A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev. A 72, 041803(R) (2005). [CrossRef]
  27. S. H. Lim, A. G. Caster, and S. R. Leone, "Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy," Opt. Lett. 32, 1332 (2007). [CrossRef] [PubMed]
  28. B. Vacano and M. Motzkus, "Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment," Phys. Chem. Chem. Phys. 10, 681 (2008). [CrossRef]
  29. E. Gershgoren, R. A. Bartels, J. T. Fourkas, R. Tobey, M. M. Murnane, and H. C. Kapteyn, "Simplified setup for high-resolution spectroscopy that uses ultrashort pulses," Opt. Lett. 28, 361 (2003). [CrossRef] [PubMed]
  30. N. Dudovich, T. Polack, A. Pe’er, and Y. Silberberg, "Simple route to strong-field coherent control," Phys. Rev. Lett. 94,083002 (2005). [CrossRef] [PubMed]
  31. C. Trallero-Herrero, J. L. Cohen, and T. Weinacht, "Strong-field atomic phase matching," Phys. Rev. Lett. 96, 063603 (2006). [CrossRef] [PubMed]
  32. S. D. Clow, C. Trallero-Herrero, T. Bergeman, and T. Weinacht, "Strong field multiphoton inversion of a threelevel system using shaped ultrafast laser pulses," Phys. Rev. Lett. 100, 233603 (2008). [CrossRef] [PubMed]
  33. M. Wollenhaupt, A. Praelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, "Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses," Phys. Rev. A 73, 063409 (2006). [CrossRef]
  34. H. Li, A. D. Ahmasi; B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, "Coherent mode-selective Raman excitation towards standoff detection," Opt. Express 16, 5499 (2008) [CrossRef] [PubMed]
  35. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, "Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses," Appl. Phys. Lett. 92, 171116 (2008). [CrossRef]
  36. J. F. Young, G. C. Bjorklund, A. H. Kung, R. B. Miles, and S. E. Harris, "Third-harmonic generation in phasematched Rb vapor," Phys. Rev. Lett. 27, 1551 (1971). [CrossRef]
  37. R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, "Tunable coherent vacuum-ultraviolet generation in atomic vapors," Phys. Rev. Lett. 32, 343 (1974). [CrossRef]
  38. S. C. Wallace and G. Zdasiuk, "High-efficiency four-wave sum mixing in magnesium at 140 nm," Appl. Phys. Lett. 28, 449 (1976). [CrossRef]
  39. T. J. McKee, B. P. Stoicheff, and S. C. Wallace, "Tunable, coherent radiation in the Lyman-α region (1210-1290 A) using magnesium vapor," Opt. Lett. 3,207 (1978). [CrossRef] [PubMed]
  40. P. H. Herman, P. E. LaRocque, R. H. Lipson, W. Jamroz, and B. P. Stoicheff, "Vacuum ultraviolet laser spectroscopy III: laboratory sources of coherent radiation tunable from 105 to 175 nm using Mg, Zn, and Hg vapors," Can. J. Phys. 63, 1581 (1985). [CrossRef]
  41. F. S. Tomkins and R. Mahon, "High-efficiency four-wave sum and difference mixing in Hg vapor," Opt. Lett. 6, 179 (1981). [CrossRef] [PubMed]
  42. R. Hilbig and R. Wallenstein, "Resonant sum and difference frequency mixing in Hg," IEEE J. Quantum Electron. 19, 1759 (1983). [CrossRef]
  43. G. Hilber, A. Lago, and R. Wallenstein, "Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton," J. Opt. Soc. Am. B 4, 1735 (1987). [CrossRef]
  44. Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, "Generation of tunable coherent extremeultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing," Opt. Lett. 18, 735 (1993). [CrossRef] [PubMed]
  45. S. Hannemann, U. Hollenstein, E-J. van Duijn, and W. Ubachs, "Production of narrowband tunable extremeultraviolet radiation by noncollinear resonance-enhanced four-wave mixing," Opt. Lett. 30, 1494 (2005). [CrossRef] [PubMed]
  46. Q3. J. G. Eden, "From N2 (337 nm) to high-order harmonic generation: 40 years of coherent source development in the UV and VUV," IEEE J. Sel. Top. Quantum Electron. 6, 1051 (2000), and references therein. [CrossRef]
  47. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atom (Dover Publications, New York, 1987).
  48. T. J. Chen, D. DeBeer, and S. R. Hartmann, "Observation and relaxation of the two-photon-excited trilevel echo is sodium vapor," J. Opt. Soc. Am. B 3, 493 (1986). [CrossRef]
  49. J. E. Golub and T. W. Mossberg, "Studies of picosecond collisional dephasing in atomic sodium vapor using broad-bandwdith transient four-wave mixing," J. Opt. Soc. Am. B 3, 554 (1986). [CrossRef]
  50. L. Rybak, L. Chuntonov, A. Gandman, N. Shakour, and Z. Amitay are preparing a manuscript to be called "Measurements of collisional dephasing of 3s-4s Na coherent superpositions by femtosecond four-wave mixing."

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited