OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21821–21834

Optically powered fiber networks

M. Röger, G. Böttger, M. Dreschmann, C. Klamouris, M. Huebner, A. W. Bett, J. Becker, W. Freude, and J. Leuthold  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21821-21834 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (725 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optically powered networks are demonstrated. Heterogeneous subscribers having widely varying needs with respect to power and bandwidth can be effectively controlled and optically supplied by a central office. The success of the scheme relies both on power-efficient innovative hardware and on a novel low-energy medium access control protocol. We demonstrate a sensor network with subscribers consuming less than 1 µW average power, and an optically powered high-speed video link transmitting data at a bitrate of 100 Mbit/s.

© 2008 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4250) Fiber optics and optical communications : Networks
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(060.4256) Fiber optics and optical communications : Networks, network optimization

Original Manuscript: September 16, 2008
Revised Manuscript: November 12, 2008
Manuscript Accepted: November 13, 2008
Published: December 17, 2008

Virtual Issues
Optics for Energy (2008) Optics Express

Wolfgang Freude, Moritz Roeger, Gunnar Boettger, Michael Dreschmann, Michael Huebner, Christos Klamouris, Andreas Bett, Juergen Becker, and Juerg Leuthold, "Optically powered fiber networks," Opt. Express 16, 21821-21834 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Th. Pfeiffer, J. Hehmann, H. Schmuck, W. Freude, J. Vandewege, and H. Yanagisawa, "Monitoring and protecting the optical layer in FTTH networks," in Proc. FTTH Conf. & Expo, Las Vegas (NV), USA, Oct. 3-6, 2005.
  2. B. C. DeLoach, R. C. Miller, and S. Kaufman, "Sound alerter powered over an optical fiber," Bell. Syst. Tech. J. 57, 3309−3316 (1978).
  3. R. C. Miller and R. B. Lawry, "Optically powered speech communication over a fiber lightguide," Bell. Syst. Tech. J. 58, 1735−1741 (1979).
  4. R. C. Miller, B. C. DeLoach, T. S. Stakelon, and R. B. Lawry, "Wideband, bidirectional lightguide communication with an optically powered audio channel," Bell Syst. Tech. J. 61, 1359-1365 (1982).
  5. H. Kirkham and A. R. Johnston, "Optically powered data link for power system applications," IEEE Trans. Power Delivery 4, 1997−2004 (1989). [CrossRef]
  6. T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993). [CrossRef]
  7. S. J. Pember, C. M. France, and B. E. Jones, "A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors," Sens. Actuators A 47, 474−477 (1995). [CrossRef]
  8. M. Q. Feng, "Optically powered electrical accelerometer and its field testing," J. Eng. Mech. 124, 513−519 (1998). [CrossRef]
  9. R. Pena, C. Algora, I. R. Matías, and M. López-Amo, "Fiber-based 205-mW (27% efficiency) power-delivery system for an all-fiber network with optoelectronic sensor units," Appl. Opt. 38, 2463−2466 (1999). [CrossRef]
  10. H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Design approaches to power-over-optical local-area-network systems," Appl. Opt. 43, 1379−1389 (2004). [CrossRef] [PubMed]
  11. G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008). [CrossRef]
  12. K. Liu, "Power budget considerations for optically activated conventional sensors and actuators," IEEE Trans. Instrum. Meas. 40, 25−27 (1991). [CrossRef]
  13. S. van Riesen, U. Schubert, and A. W. Bett, "GaAs photovoltaic cells for laser power beaming at high power densities," in Proc. 17th Eur. PV Solar Energy Conf., Munich, Germany, 2001, 18−21, Paper VA1/26.
  14. H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Photovoltaic cell characteristics for high-intensity laser light," Sol. Energy Mater. Sol. Cells 86, 253-267 (2005). [CrossRef]
  15. J. G. Werthen, "Powering next generation networks by laserlight over fiber," in The Opt. Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., Technical Digest (CD) (Optical Society of America, 2008), Paper OWO3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWO3.
  16. C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997). [CrossRef]
  17. A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999). [CrossRef]
  18. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-efficient communication protocol for wireless microsensor networks," in Proc. 33 rd Hawaii Int. Conf. System Sciences, Hawaii, Jan. 4-7, 2000, vol. 2, 1-10.
  19. W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MAC protocol for wireless sensor networks," in Proc. IEEE Infocom, New York, June 2002, 1567-1576.
  20. W. Ye, F. Silva, and J. Heidemann, "Ultra-low duty cycle MAC with scheduled channel polling," in Proc. 4th ACM SenSys Conf., Boulder (CO), Nov. 1-3, 2006, 321-334. In this Reference, the term "polling" refers to each subscriber sampling the channel to check for activity.
  21. In this paper, the term "polling" is used to indicate a CO listening to and/or interrogating subscribers.
  22. Our wavelength-optimized photovoltaic converter has a high conversion efficiency of up to 50 % depending on illumination power and load [´ 13]. For low optical input powers, a pin-photodiode with very small saturation current is optimum.
  23. Mixed signal microcontroller, Texas Instruments MSP430-family. At 3.6 V and in low-power mode LPM3-VLO ("sleep mode", internal inaccurate clock active) we measured a supply current of 0.5 µA, in LPM3-LFXT1 ("snooze mode", external accurate quartz clock active) it was 1 µA. Further modes are memory retention mode LPM4 (0.1 µA) and active mode (390 µA). An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.
  24. Microcontroller UART tutorial: http://www.societyofrobots.com/microcontroller_uart.shtml.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited